K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đặt A= "biểu thức"

\(A^2=5+2\sqrt{6}+5-2\sqrt{6}-2\sqrt{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}=10-2=8\)

=> A= căn 8 

KL : "biểu thức" = căn 8

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Lời giải:

a. \(=|\sqrt{7}-5|+|2-\sqrt{7}|=5-\sqrt{7}+(\sqrt{7}-2)=3\)

b. \(=\sqrt{(3+\sqrt{2})^2}-\sqrt{(3-\sqrt{2})^2}=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=(3+\sqrt{2})-(3-\sqrt{2})=2\sqrt{2}\)

c.

\(=\sqrt{(3+2\sqrt{2})^2}+\sqrt{(3-2\sqrt{2})^2}=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

$=(3+2\sqrt{2})+(3-2\sqrt{2})=6$

d.

$=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}$

$=|\sqrt{5}+1|-|\sqrt{5}-1|=\sqrt{5}+1-(\sqrt{5}-1)=2$

Câu 1: 

\(A=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

Câu 2: 

\(\Leftrightarrow\left|2x-3\right|=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=2\sqrt{3}\\2x-3=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{3}+3}{2}\\x=\dfrac{-2\sqrt{3}+3}{2}\end{matrix}\right.\)

a: \(E=1+1=2\)

b: \(=6+3\sqrt{5}+\sqrt{6}-\sqrt{2}+\sqrt{6}-\sqrt{5}\)

\(=6+2\sqrt{6}-\sqrt{2}+2\sqrt{5}\)

d: \(=2+\sqrt{3}+2-\sqrt{3}=4\)

a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)

\(=\sqrt{2}-1-3-\sqrt{2}\)

=-4

b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)

\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)

\(=3\sqrt{3}+1\)

c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)

\(=3\sqrt{5}-6\)

d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)

\(=\sqrt{7}-2+4-\sqrt{7}+8\)

=10

30 tháng 9 2023

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{5+2\sqrt{6}}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{3}\)

b) \(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{2}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\sqrt{2}\)

\(=\sqrt{2}-\sqrt{2}\)

\(=0\)

c) \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\cdot\left(2+\dfrac{5-3\sqrt{5}}{3-\sqrt{5}}\right)\)

\(=\left[2-\dfrac{\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\right]\cdot\left[2-\dfrac{\sqrt{5}\left(3-\sqrt{5}\right)}{3-\sqrt{5}}\right]\)

\(=\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)\)

\(=4-4\sqrt{5}+5\)

\(=9-4\sqrt{5}\)

d) \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{6-4}-\dfrac{12\left(3+\sqrt{6}\right)}{9-6}\right]\left(\sqrt{6}+11\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(=6-121\)

\(=-115\)

12 tháng 10 2021

\(a,=\dfrac{\sqrt{7}-5}{2}-\dfrac{3-\sqrt{7}}{2}+\dfrac{6\left(\sqrt{7}+2\right)}{3}-\dfrac{5\left(4-\sqrt{7}\right)}{9}\\ =\dfrac{\sqrt{7}-5-3+\sqrt{7}}{2}+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\dfrac{2\sqrt{7}-8}{2}+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\sqrt{7}-4+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\dfrac{27\sqrt{7}-20+5\sqrt{7}}{9}=\dfrac{32\sqrt{7}-20}{9}\)

\(b,=\dfrac{2\left(\sqrt{6}+2\right)}{2}+\dfrac{2\left(\sqrt{6}-2\right)}{2}+\dfrac{5\sqrt{6}}{6}\\ =\sqrt{6}+2+\sqrt{6}-2+\dfrac{5\sqrt{6}}{6}\\ =\dfrac{12\sqrt{6}+5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)

\(c,=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\\ =\dfrac{2\sqrt{5}}{5+2\sqrt{6}-5}=\dfrac{2\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{30}}{6}\)

28 tháng 8 2023

\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

a: \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

b: \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{5}+2-4+\sqrt{5}\)

\(=2+\sqrt{3}-2=\sqrt{3}\)