Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
1, \(\sqrt{8}-3\sqrt{32}+\sqrt{72}=2\sqrt{2}-12\sqrt{2}+6\sqrt{2}=-4\sqrt{2}\)
2,\(6\sqrt{12}-2\sqrt{48}+5\sqrt{75}-7\sqrt{108}=12\sqrt{3}-8\sqrt{3}+25\sqrt{3}-42\sqrt{3}=-13\sqrt{3}\)
3, \(\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{3}\sqrt{125}=2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{5}{3}.\sqrt{5}=-\dfrac{44}{3}.\sqrt{5}\)
4, \(2\sqrt{5}-\sqrt{125}-\sqrt{80}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}=-7\sqrt{5}\)
5, \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
a. \(\frac{26}{5-2\sqrt{3}}\)=\(\frac{26\cdot\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}\)=\(\frac{26\cdot\left(5+2\sqrt{3}\right)}{5^2-\left(2\sqrt{3}\right)^2}=\frac{26\cdot\left(5+2\sqrt{3}\right)}{13}=2\cdot\left(5+2\sqrt{3}\right)=10+4\sqrt{3}\)
b.\(\frac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\frac{\sqrt{3}\cdot\left(3\sqrt{3}-2\right)}{\sqrt{2}\cdot\left(3\sqrt{3}-2\right)}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2}\)
c.\(\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\sqrt{5}\cdot\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\cdot\left(2\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{10}}{2}\)
d.\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)=\(4\sqrt{5}\)
@.@ Trời ơi, nhiều thế ^^
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)
\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)
b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)