Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
c: \(x^2-6\sqrt{x^2+5}+x=2\sqrt{x-1}-14\)
=>\(x^2-4-6\left(\sqrt{x^2+5}-3\right)+x-2-2\sqrt{x-1}+2=0\)
=>\(\left(x-2\right)\left(x+2\right)-6\cdot\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}+\left(x-2\right)-2\cdot\dfrac{x-1-1}{\sqrt{x-1}+1}=0\)
=>\(\left(x-2\right)\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x-2\right)\left(x+2\right)+\left(x-2\right)-2\cdot\dfrac{x-2}{\sqrt{x-1}+1}=0\)
=>\(\left(x-2\right)\left[\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x+2\right)+1-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)
=>x-2=0
=>x=2
d: \(x^2-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x=\sqrt{x^2-8}+\sqrt{x-2}+9\)
=>\(x^2-9-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x-\sqrt{x^2-8}-\sqrt{x-2}=0\)
=>\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\sqrt{x^3-2x^2-8x+16}+x-3+1-\sqrt{x^2-8}+2-\sqrt{x-2}=0\)
=>\(\left(x-3\right)\left(x+3\right)+\left(x-3\right)-\sqrt{x^3-2x^2-8x+16}+1+\dfrac{1-x^2+8}{1+\sqrt{x^2-8}}+1-\sqrt{x-2}=0\)
=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+16-1}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}+\dfrac{1-x+2}{1+\sqrt{x-2}}=0\)
=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+15}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\dfrac{\left(x-3\right)\left(x^2+x-5\right)}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+4\right)-\dfrac{x^2+x-5}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{x+3}{\sqrt{x^2-8}+1}-\dfrac{1}{\sqrt{x-2}+1}\right]=0\)
=>x-3=0
=>x=3
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
Bài 1:
a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)
\(=\sqrt{2}\)
b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2\)
Bài 2:
a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) ĐKXĐ: \(x\ne\pm2\)
Với \(x\ne\pm2\), ta có:
\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)
\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)
\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)
\(\Rightarrow x^2-4=8-x\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)
Vậy phương trình có tập nghiệm là: S ={3; -4}
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^2+8}\)
\(\Leftrightarrow\sqrt{2\left(x^2+8\right)}=5\)
\(\Leftrightarrow2\left(x^2+8\right)=25\)
\(\Leftrightarrow2x^2=9\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow x=\pm\frac{3}{\sqrt{2}}\)
Hok tốt
\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^2+8}\)
\(\Rightarrow\left[\sqrt{2}\left(x^2+8\right)\right]^2=\left(5\sqrt{x^2+8}\right)^2\)
\(\Leftrightarrow2\left(x^4+16x^2+64\right)=25\left(x^2+8\right)\)
\(\Leftrightarrow2x^4+32x^2+128=25x^2+200\)
\(\Leftrightarrow2x^4+7x^2-72=0\)
\(\Leftrightarrow x^4+\frac{7}{2}x^2-36=0\)
\(\Leftrightarrow x^4+2.x^2.\frac{7}{4}+\frac{49}{16}-\frac{49}{16}-36=0\)
\(\Leftrightarrow\left(x^2+\frac{7}{4}\right)^2-\frac{625}{16}=0\)
\(\Leftrightarrow\left(x^2+\frac{7}{4}+\frac{25}{4}\right)\left(x^2+\frac{7}{4}-\frac{25}{4}\right)=0\)
\(\Leftrightarrow\left(x^2+8\right)\left(x^2-\frac{9}{2}\right)=0\left(1\right)\)
Ta thấy \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+8\ge8>0;\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x^2-\frac{9}{2}=0\)
\(\Leftrightarrow x^2=\frac{9}{2}\)
\(\Leftrightarrow x=\pm\frac{3}{\sqrt{2}}\)
Vậy tập hợp nghiệm của pt \(S=\left\{\frac{3}{\sqrt{2}};\frac{-3}{\sqrt{2}}\right\}\)