Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
*****************************************************
ĐK \(x\ge-5\)
Ta có: \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow\sqrt{x+5}\left(\sqrt{4}-3+\dfrac{4}{3}\sqrt{9}\right)=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Rightarrow x=\left(\dfrac{6}{3}\right)^2-5=-1\)(TMĐK)
Vậy x=-1
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45=6}\)\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\)
vậy có tập nghiệm S là -1
Lời giải:
a) ĐK: \(x\geq 0\)
\(4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
\(\Leftrightarrow 4\sqrt{x}-2\sqrt{9}.\sqrt{x}+\sqrt{16}.\sqrt{x}=5\)
\(\Leftrightarrow 4\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)
\(\Leftrightarrow 2\sqrt{x}=5\Rightarrow \sqrt{x}=\frac{5}{2}\Rightarrow x=\frac{25}{4}\) (thỏa man)
b) ĐK: \(x\geq -5\)
PT \(\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{x+5}+\frac{4}{3}\sqrt{9}.\sqrt{x+5}=6\)
\(\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow 3\sqrt{x+5}=6\Rightarrow \sqrt{x+5}=2\)
\(\Rightarrow x+5=2^2=4\Rightarrow x=-1\) (thỏa mãn)
1. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)
Vậy $x=1$ là nghiệm của pt.
2. ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$
$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$
$\Leftrightarrow 3\sqrt{x+5}=0$
$\Leftrightarrow \sqrt{x+5}=0$
$\Leftrightarrow x=-5$
a)
\(\sqrt{25x}=35\)
\(\Leftrightarrow5\sqrt{x}=35\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)
Vậy phương trình đã cho có nghiệm x = 49 .
b)
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\Leftrightarrow x=-1\)
Vậy phương trình đã cho có nghiệm là x = -1.
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
ĐK:5+x\(\ge0\)\(\Leftrightarrow x\ge-5\)
\(\sqrt{4x+20}-3\sqrt{5+x}=6-\dfrac{4}{3}\sqrt{9x+45}\)
\(\Leftrightarrow\sqrt{4\left(x+5\right)}-3\sqrt{x+5}=6-\dfrac{4}{3}\sqrt{9\left(x+5\right)}\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}.3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\)(tm)
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)
\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)
\(\Leftrightarrow9x-\left|7x+5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x=6\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)
\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)
\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)
\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)
\(\Leftrightarrow-5=21-8\sqrt{x+5}\)
\(\Leftrightarrow8\sqrt{x+5}=21+5\)
\(\Leftrightarrow8\sqrt{x+5}=26\)
\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)
\(\Leftrightarrow x+5=\dfrac{169}{16}\)
\(\Leftrightarrow x=\dfrac{169}{16}-5\)
\(\Leftrightarrow x=\dfrac{89}{16}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)
Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D
a) \(\sqrt{1-4x+4x^2}=5\)
<=> \(\sqrt{4x^2-4x+1}=5\)
<=> 4x2 - 4x + 1 = 52
<=> 4x2 - 4x + 1 = 25
<=> 4x2 - 4x + 1 - 25 = 0
<=> 4x2 - 4x - 24 = 0
<=> 4(x + 2)(x - 3) = 0
<=> x = -2 hoặc x = 3
=> x = -2 hoặc x = 3
b) \(\sqrt{4-5x}=12\)
<=> \(\sqrt{-5x+4}=12\)
<=> -5x + 4 = 122
<=> -5x + 4 = 144
<=> -5x = 144 - 4
<=> -5x = 140
<=> x = -28
=> x = -28
\(a,\sqrt{1-4x+4x^2}=5\)
\(\Rightarrow4x^2-4x+1=25\)
\(\Rightarrow4x^2-4x-24=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\)
\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
\(b,\sqrt{4-5x}=12\)
\(\Rightarrow4-5x=144\)
\(\Rightarrow5x=-140\)
\(\Rightarrow x=-28\)
Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
hay x=-1
\(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\left(x\ge-5\right)\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\cdot\sqrt{x+5}=6\)
\(\Leftrightarrow3\cdot\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=2^2=4\)
\(\Leftrightarrow x=-1\left(N\right)\)