\(\sqrt{4x-3}\) - \(\sqrt{x2-3}\)

= 0

Em ra là 4x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

`\sqrt{4x-3}-\sqrt{x^2-3}=0`    `ĐK: x >= \sqrt{3}`

`<=>\sqrt{4x-3}=\sqrt{x^2-3}`

`<=>4x-3=x^2-3`

`<=>x^2-4x=0`

`<=>x(x-4)=0`

`<=>[(x=0(ko t//m)),(x=4(t//m)):}`

Vậy `S={4}`.

24 tháng 9 2023

cảm ơn rất nhiều ạ

1 tháng 9 2018

a/\(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{x^2}{\sqrt{5}}=\sqrt{20}\Leftrightarrow x^2=\sqrt{100}\Leftrightarrow x=\sqrt{10}\)

b/ \(\sqrt{\left(x-3\right)^2}-9=0\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)

Vậy.......

c/ \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy.......

24 tháng 5 2020

Ta có: \(x_1+x_2=2702\) và \(x_1.x_2=1\) ( theo định lí viet)

Ta tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=2702+2=2704\)

=> \(\sqrt{x_1}+\sqrt{x_2}=52\)

Ta tính: \(\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)^3=x_1+x_2+3\sqrt[3]{x_1x_2}\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)\)

Đặt: \(\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)=t\)

ta có phương trình: \(t^3-3t-2702=0\)<=> t = 14 

=> \(\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)=14\)

=> M = 52 + 14 = 66

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

27 tháng 6 2017

đúng rồi bạn nhé

27 tháng 6 2017

Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

30 tháng 3 2018

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

30 tháng 3 2018

minh lop 5 dang chi minh muon nick cua minh