Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)
\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)
\(=\frac{4}{5}+11-2\)
\(=\frac{4}{5}+9\)
\(=\frac{49}{9}\)
b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
\(=-8+4-5+64\)
= 55
c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)
\(=\frac{\sqrt{48}}{91-7}\)
\(=\frac{4\sqrt{3}}{84}\)
\(=\frac{\sqrt{3}}{41}\)
d) Xem lại đề nhé em!
e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
\(=5-3.\frac{2}{3}\)
= 5 - 2
= 3
h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)
\(=-9.\frac{1}{3}-7+125:5\)
\(=-3-7+25\)
= 15
1. a) 3+2=5
b) 0,5-0,1=0,4
c) 4/5-1/9=31/45
d) 2-0,6=1,4
2. a) 8-4+3=7
b) 11+5-3=13
c) 3/2-4/6-7-37/6
d) 4+5-6=3
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a. AMB = AMC
b. AM là tia phân giác của góc
c. AM ⊥ BC
d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Chứng minh:At//BC
Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a. Chứng minh Δ ABD = Δ EBD
b. Tính số đo
c. Chứng minh BD ⊥ AE
Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:
a. ADE = CFE
b. DB = CF
c. AB // CF
d. DE // BC
Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.
a. Chứng minh rằng: ΔBEC =Δ BED
b. Chứng minh ID = IC
c. Từ A kẻ AH DC, H. Chứng minh: AH // BI
Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.
a. Chứng minh rằng: BE = CD
b. Chứng minh: BE//CD
c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN
Hình học nha:)a) \(10\sqrt{0,01}.\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)
\(=10\sqrt{\frac{10}{100}}.\sqrt{\frac{4^2}{3^2}}+3.\sqrt{7^2}-\frac{1}{6}\sqrt{2^2}\)
\(=10.\frac{\sqrt{10}}{10}.\frac{4}{3}+3.7-\frac{1}{6}.2\)
\(=\frac{4\sqrt{10}}{3}+27-\frac{1}{3}\)
\(=\frac{4}{3}\sqrt{10}+\frac{80}{3}\)
b) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}\)
\(=\frac{17}{4800}\)
Tính:
C = \(3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right).2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
= \(\dfrac{7}{2}.\dfrac{4}{49}-\left[\left(2+0,\left(1\right).4\right).\dfrac{27}{5}\right].\dfrac{-5}{42}\)
= \(\dfrac{1.2}{1.7}-\left[\left(2+\dfrac{1.4}{9}\right).\dfrac{27}{5}\right].\dfrac{-5}{42}\)
= \(\dfrac{2}{7}-\left[\dfrac{18+4}{9}.\dfrac{27}{5}\right].\dfrac{-5}{42}\)
= \(\dfrac{2}{7}-\left[\dfrac{22.9}{3.5}\right].\dfrac{-5}{42}\)
= \(\dfrac{2}{7}-\dfrac{198}{15}.\dfrac{-5}{42}=\dfrac{2}{7}-\dfrac{11}{3}.\dfrac{-1}{7}\)
= \(\dfrac{2}{7}+\dfrac{11}{21}\) = \(\dfrac{6+11}{21}\) = \(\dfrac{17}{21}\)
\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(=7-5.\left(-5\right).1,2+\frac{4}{3}\)
\(=7+25.1,2+\frac{4}{3}\)
\(=7+30+\frac{4}{3}\)
\(=37+\frac{4}{3}\)( Mẫu chung là 3 )
\(=\frac{111}{3}+\frac{4}{3}\)
\(=\frac{115}{3}\)