\(\sqrt{4-\left(1-x\right)^2}-\sqrt{3}=0\)\(0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(\Leftrightarrow\sqrt{4-\left(1-x\right)^2}=\sqrt{3}\)

\(\Leftrightarrow4-\left(1-x\right)^2=3\)

\(\Leftrightarrow4-\left(1-2x+x^2\right)-3=0\)

\(\Leftrightarrow4-1+2x-x^2-3=0\)

\(\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

vay x=0 ; x=2

\(\sqrt{3x^2-5=2}\left(x\ge\sqrt{\frac{5}{3}}\right)\)

\(\Leftrightarrow3x^2-5=4\)

\(\Leftrightarrow3x^2=9\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\left(tm\right)\\x=-\sqrt{3}\left(kotm\right)\end{cases}}\)

vay \(x=\sqrt{3}\)

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\left(x\ge49\right)\)

\(\Leftrightarrow\sqrt{x-49}=2\Leftrightarrow x^2-98x+2401=4\)

\(\Leftrightarrow x^2-98x+2397=0\Leftrightarrow x^2-47x-51x+2397\)\(\Leftrightarrow x\left(x-47\right)-51\left(x-47\right)\Leftrightarrow\left(x-47\right)\left(x-51\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-51=0\\x-47=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=51\left(tm\right)\\x=47\left(kotm\right)\end{cases}}}\)

xay x=51

\(\sqrt{\frac{-6}{1+x}}=5\left(x< -1\right)\)

\(\Leftrightarrow\frac{36}{x^2+2x+1}=25\Leftrightarrow25x^2+50x+25=36\)

\(\Leftrightarrow25x^2+50x-11=0\Leftrightarrow25x^2-5x+55x-11\)

\(\Leftrightarrow5x\left(5x-1\right)+11\left(5x-1\right)\Leftrightarrow\left(5x-1\right)\left(5x+11\right)\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\5x+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(kotm\right)\\x=\frac{-11}{5}\left(tm\right)\end{cases}}}\)

vay \(x=\frac{-11}{5}\)

nhung cau nay binh phuong len la xong 

y 3 xem lai de bai 

y 4,7 ko biet lam

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||

4 tháng 8 2019

a)   x=-1

x=8

4 tháng 8 2019

a)  x=8 hoặc x=-1

Đặt ẩn phụ

g)  x=1 hoặc x=2 hoặc x=-3

Phân tích thành nhân tử rồi xét giá trị

4 tháng 8 2019

e) 

\(\sqrt{2x+1}-\sqrt{3x}=x-1\) 1

<=>\(2x+1-3x=\left(x+1\right)^2\)

<=>\(2x+1-3x=x^2-2x+1\)

<=> \(2x-3x-x^2+2x=1-1\)

<=> \(x-x^2=0\)

<=> \(x\left(1-x\right)=0\)

<=> \(x=0\)Hoặc \(1-x=0\)

trg hợp 1 : \(x=0\)

th2: \(1-x=0\)<=>\(x=1\)

4 tháng 8 2019

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)

Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)

\(a+b+ab=3\)

và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)

Cộng hai vế xuống ta có :

\(a^2+b^2=x+1+8-x=9\)

Theo phương trình ta lại có :

\(a+b+ab=3\)

Ta có hệ phương trình :

\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)

Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi