Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dài v nhg thui cố làm v
a)\(\sqrt{4x^2}-20x+25+2x=5\)
=> \(2x-18x+20=0\)
=> \(-16x+20=0\)
=> \(-4x+5=0\)
=> \(-4x=-5\)
=> \(x=\dfrac{5}{4}\)
vậy........................................................
d) \(\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1-1}\)
cau này đề sai
ok baby
do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)
voi dk \(x\ge-1\) ta co
\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)
b,\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|+2x=5\)
th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)
th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)
\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)
kl \(x\le\frac{5}{2}\)
c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)
d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)
ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
dau = xay ra \(\Leftrightarrow x=-1\)
\(a,\sqrt{4x^2-20x+25}+2x=5\)
\(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)
\(b,\sqrt{1-12x+36x^2}=5\)
\(\Rightarrow6x-1=5\)
\(\Rightarrow6x=6\Rightarrow x=1\)
\(c,\sqrt{x^2+x}=x\)
\(\Rightarrow x^2+x=x^2\)
\(\Rightarrow x=0\)
\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)
\(\Rightarrow-1=0\) (vô lý)
=> PT vô nghiệm
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
Câu a:
TH1: \(x+\sqrt{\left(2x-1\right)^2}=2\Leftrightarrow x+2x-1=2\Leftrightarrow x=1\)
TH2:\(x+\sqrt{\left(2x-1\right)^2}=2\Leftrightarrow x-2x+1=2\Leftrightarrow x=-1\)
ĐK: \(x\le2\)
\(x+\sqrt{4x^2-4x+1}=2\)
\(\Leftrightarrow\)\(\sqrt{4x^2-4x+1}=2-x\)
\(\Leftrightarrow\)\(4x^2-4x+1=4-4x+x^2\)
\(\Leftrightarrow\)\(3x^2=3\)
\(\Leftrightarrow\)\(x=\pm1\)(t/m)
Vậy...
\(1-\sqrt{4x^2-20x+25}=0\)
\(\Leftrightarrow\)\(\sqrt{4x^2-20x+25}=1\)
\(\Leftrightarrow\)\(4x^2-20x+24=0\)
\(\Leftrightarrow\)\(x^2-5x+6=0\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy...
a/ ĐKXĐ: ....
\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)
\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: ....
\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)
\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)
a.\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b.\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow2x-5=5-2x\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
c.
d.\(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)
\(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{4}\right)^2}=\dfrac{1}{4}-x\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{1}{4}-x\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
a: =>|x-3|=3-x
=>x-3<=0
hay x<=3
b: =>|2x-5|=-2x+5
=>2x-5<=0
=>x<=5/2
c: =>|căn x-1-1|=căn x-1-1
=>căn x-1-1>=0
=>căn x-1>=1
=>x-1>=1
hay x>=2
a) \(\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\) \(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)
b) \(\sqrt{4x^2-20x+25}+2x=5\Leftrightarrow\left|2x-5\right|+2x-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x-5+2x-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\5-2x+2x-5=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x-10=0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\0x=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x=\dfrac{10}{4}\left(N\right)\end{matrix}\right.\\x\le\dfrac{5}{2}\end{matrix}\right.\) ** 10/4 = 5/2 rồi**
Kl: x \< 5/2
c) \(\sqrt{1-12x+36x^2}=5\Leftrightarrow\left|1-6x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)
Kl: x=-2/3, x=1
d) Đk: x >/ 1
\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}+1=2\left(1\right)\\\sqrt{x-1}+2=-2\left(VN\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\)(N)
Kl: x=2
e) Đk: x >/ 1
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge1\\\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x-1}-1=\sqrt{x-1}-1\) (luôn đúng)
kl: x >/ 1
f) \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left|\dfrac{1}{4}-x\right|=\dfrac{1}{4}-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\end{matrix}\right.\)
(luôn đúng)
Kl: x \< 1/4
Lần sau xé nhỏ câu hỏi giùm con nha má, để nhiều thế này thất thu T_T!
\(\sqrt{3x+1}=x-1\)ĐK : \(x\ge1\)
\(\Leftrightarrow3x+1=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1-3x-1=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=5\left(c\right)\end{matrix}\right.\)
\(\sqrt{4x^2-20x+25}=1\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=1\)
\(\Leftrightarrow\left|2x-5\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=1\\2x-5=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)