K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4

 

14 tháng 12 2020

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

14 tháng 12 2020

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ

16 tháng 8 2019

Không biết sao bạn cho thêm \(x\in Z\) vào cuối câu nhỉ? Giải pt nghiệm nguyên lai pt vô tỉ à :v

Bài làm :

\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}+6=3\sqrt{x+1}+2\sqrt{x+2}+2\sqrt{x-1}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x-1}=b\\\sqrt{x+2}=c\end{matrix}\right.\)

\(pt\Leftrightarrow ac+ab+6=3a+2b+2c\)

\(\Leftrightarrow ac+ab+6-3a-2b-2c=0\)

\(\Leftrightarrow c\left(a-2\right)+b\left(a-2\right)-3\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b+c-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\b+c=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x-1}+\sqrt{x+2}=3\end{matrix}\right.\)

+) TH1: \(\sqrt{x+1}=2\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\) ( thỏa )

+) TH2: \(\sqrt{x-1}+\sqrt{x+2}=3\)

\(\Leftrightarrow x-1+x+2+2\sqrt{\left(x-1\right)\left(x+2\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}=8-2x\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=4-x\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=\left(4-x\right)^2\)

\(\Leftrightarrow x^2+x-2=x^2-8x+16\)

\(\Leftrightarrow9x=18\)

\(\Leftrightarrow x=2\) ( thỏa )

Vậy \(x\in\left\{2;3\right\}\).

16 tháng 8 2019

ghê à nha, em tính liên hợp nhưng thôi, thấy anh làm r:)

NV
15 tháng 4 2019

a/ ĐKXĐ: \(\left|x\right|\ge1\)

- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+6}>0\\x-2\sqrt{x^2-1}< 0\end{matrix}\right.\) \(\Rightarrow\) pt vô nghiệm

- Với \(x>1\) ta luôn có \(\sqrt{x^2+6}>x\) (dễ dàng chứng minh bằng cách bình phương 2 vế)

\(x>x-2\sqrt{x^2-1}\Rightarrow\sqrt{x^2+6}>x-2\sqrt{x^2-1}\)

Phương trình vô nghiệm

Bạn có nhầm đề ko?

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a+b=1\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1-a\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)

\(\Leftrightarrow a^3+a^2-2a=0\) \(\Leftrightarrow a\left(a-1\right)\left(a+2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{2-x}=0\\\sqrt[3]{2-x}=1\\\sqrt[3]{2-x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=10\end{matrix}\right.\)

NV
15 tháng 4 2019

c/

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a^3-b^3=2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a^2+ab+b^2\right)=2\\a^2+b^2+ab=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=2\Rightarrow a=b+2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Rightarrow\left(b+2\right)^2+b^2+\left(b+2\right)b-1=0\)

\(\Leftrightarrow3b^2+6b+3=0\Rightarrow3\left(b+1\right)^2=0\Rightarrow b=-1\)

\(\Rightarrow\sqrt[3]{x-1}=-1\Rightarrow x=0\)

22 tháng 7 2019

b, Đặt \(\sqrt[3]{x}=t\)

Ta có: \(\sqrt[3]{x^2}-8\sqrt[3]{x}=20\)

\(\Leftrightarrow t^2-8t=20\Leftrightarrow t^2-8t-20=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-10\right)=0\)

\(\orbr{\begin{cases}t=-2\\t=10\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt[3]{x}=-2\\\sqrt[3]{x}=10\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-8\\x=1000\end{cases}}\)

9 tháng 9 2018

\(\text{a) }\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\\ \Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\\ \Leftrightarrow\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}+\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}=2\\ \Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)

Với \(x\ge1\Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)

\(\Leftrightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\\ \Leftrightarrow2\sqrt{2x-1}=2\\ \Leftrightarrow2x-1=1\\ \Leftrightarrow x=1\left(T/m\right)\)

Với \(x< 1\Leftrightarrow\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

\(\Leftrightarrow0x=0\left(Nghiệm\text{ }đúng\text{ }\forall x\right)\\ \Leftrightarrow x< 1\)

Vậy pt có nghiệm \(x\le1\)

18 tháng 6 2018

NGUYỄN MINH TÀI Ok bí thì cx đừng gắt,t giải đoạn đó cho

\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

\(VT=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)

\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\)

\(\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)

\("="\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\)

\(\Leftrightarrow2\le\sqrt{x-1}\le3\Leftrightarrow4\le x-1\le9\)

\(\Leftrightarrow5\le x\le10\)

18 tháng 6 2018

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)}^2+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

Làm nốt nhé :v

18 tháng 6 2021

Đk:\(x\ge-1\)

Đặt \(\left(a,b,c\right)=\left(x;\sqrt{x+1};\sqrt{2}\right)\)

Pt tt: \(a^3+b^3+c^3=\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(\Leftrightarrow0=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(\Leftrightarrow3\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x+1}=0\\\sqrt{x+1}+\sqrt{2}=0\left(vn\right)\\x+\sqrt{2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=-x\\x=-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)\(\Rightarrow\)\(\sqrt{x+1}=-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le0\\x+1=x^2\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{5}}{2}\) (tm)

Vậy...