K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Đặt biểu thức trên là A

\(A^3=2a+3A\sqrt[3]{\left(a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}\right)\left(a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}\right)}\)

\(=2a+3A\sqrt[3]{a^2-\left(\dfrac{a+1}{3}\right)^2.\dfrac{8a-1}{3}}\)

\(=2a+3A\sqrt[3]{\dfrac{-8a^3+12a^2-6a+1}{27}}\)

\(=2a+3A\sqrt[3]{\left(\dfrac{1-2a}{3}\right)^3}=2a+A\left(1-2a\right)\)

\(\Leftrightarrow A^3-2a-A+2aA=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+2a\right)=0\)

Dễ thấy \(A^2+A+2a>0\) nên A=1.

11 tháng 7 2018

Làm rõ cái bước 1 \(A^3\) hộ e với ạ

19 tháng 8 2018

a) điều kiện xác định : \(a\ge0;a\ne1\)

ta có : \(P=\dfrac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+2}-1\)

\(\Leftrightarrow P=\dfrac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}+2}\) \(\Leftrightarrow P=\dfrac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\) \(\Leftrightarrow P=\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)

để \(\left|P\right|=1\Leftrightarrow\left|\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right|=1\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=1\\\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-1=0\\\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{\sqrt{a}-1}=0\\\dfrac{2\sqrt{a}}{\sqrt{a}-1}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2=0\left(vôlí\right)\\2\sqrt{a}=0\end{matrix}\right.\Rightarrow a=0\)

vậy \(a=0\)

19 tháng 8 2018

câu b đề bị sai rồi . thế \(a=1\) vào là bt

7 tháng 8 2017

Xét \(x^3=2a+3x.\sqrt[3]{a^2-\left(\dfrac{a+1}{3}\right)^2.\dfrac{8a-1}{3}}\)

\(\Leftrightarrow x^3=2a+3x.\sqrt[3]{\dfrac{\left(1-2a\right)^3}{27}}\)

\(\Leftrightarrow x^3=2a+x.\left(1-2a\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+2a\right)=0\)

Dễ thấy \(x^2+x+2a=\left(x+\dfrac{1}{2}\right)^2+\dfrac{8a-1}{4}>0\) (vì \(a>\dfrac{1}{8}\))

Nên x=1 hay x là số nguyên.

17 tháng 10 2022

loading...Tham khảo:

 

7 tháng 10 2018

\(x=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\\ >\sqrt[3]{\dfrac{1}{8}+\dfrac{a+1}{3}\sqrt{\dfrac{8\cdot\dfrac{1}{8}-1}{3}}}+\sqrt[3]{\dfrac{1}{8}-\dfrac{a+1}{3}\sqrt{\dfrac{8\cdot\dfrac{1}{8}-1}{3}}}\\ =\sqrt[3]{\dfrac{1}{8}+\dfrac{a+1}{3}\sqrt{\dfrac{1-1}{3}}}+\sqrt[3]{\dfrac{1}{8}-\dfrac{a+1}{3}\sqrt{\dfrac{1-1}{3}}}\\ =\sqrt[3]{\dfrac{1}{8}}+\sqrt[3]{\dfrac{1}{8}}=\dfrac{1}{2}+\dfrac{1}{2}=1>0\)

Vậy................

15 tháng 1 2022

Áp dụng BĐT Bunyakovsky, ta có:

\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy, ta có:

\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)

Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)

Đẳng thức xảy ra khi a = b = c = 1.

Vậy GTNN của A là 1 (khi a = b = c = 1).