Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
\(x^3=76+3\sqrt[3]{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right)}\left(\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{38+17\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=76-3x\)
\(\Leftrightarrow x^3+3x-76=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+19\right)=0\)
\(\Leftrightarrow x=4\)
\(\Rightarrow x^3-3x^2-2x-8=0\)
6.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)
4.
ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)
\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)
\(\Leftrightarrow3t^2-7t+34=0\)
Phương trình vô nghiệm
5.
ĐKXĐ: ...
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:
\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x=4\Rightarrow x=2\)
Ta có : \(x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)
\(\left(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=18+30\)
\(\Leftrightarrow x^3-3x-18x=0\)
Ta có :
\(x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)\(\left(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18x=0\)
b)\(x^3+3x-14=0\left(1\right)\Leftrightarrow x^3-2x^2+2x^2-4x+7x+14=0\)
\(\Leftrightarrow x^2\left(x-2\right)+2x\left(x-2\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
Do \(x^2+2x+7=x^2+2x+1+6=\left(x+1\right)^2+6>0\forall x\)nên \(\left(1\right)\Leftrightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy x là nghiệm của phương trình (1) \(\Leftrightarrow x=2\)