Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2\sqrt{16.3}+\frac{6.\sqrt{3}}{3}-4.\sqrt{4.3}=\left(2.4+2-4.2\right)\sqrt{3}=2\sqrt{3}..\)
\(\sqrt{35-12\sqrt{6}}-\:\sqrt{20-8\sqrt{6}}\)
= \(\sqrt{27-2×2\sqrt{2}×3\sqrt{3}+8}-\sqrt{12-2×2\sqrt{2}×2\sqrt{3}+8}\)
= \(3\sqrt{3}-2\sqrt{2}-2\sqrt{3}+2\sqrt{2}\)
= \(\sqrt{3}\)
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-2.3.\sqrt{6}}+\sqrt{33-2.6\sqrt{6}}\)
\(=\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6^2}}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)-\left(2\sqrt{6}-3\right)\)
\(=3-\sqrt{6}-2\sqrt{6}+3\)
\(=6-3\sqrt{6}\)
Ko vt lại đề nha bn:
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-2.3.\sqrt{6}}+\sqrt{33-2.6\sqrt{6}}\)
\(=\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6^2}}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)-\left(2\sqrt{6}-3\right)\)
\(=3-\sqrt{6}-2\sqrt{6}+3\)
\(=6-3\sqrt{6}\)
Rất vui vì giúp đc bn !!!
\(\sqrt{6-4\sqrt{2}}\)\(+\sqrt{22-12\sqrt{2}}\)
\(=\sqrt{4-4\sqrt{2}+2}\)\(+\sqrt{18-12\sqrt{2}+4}\)
\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)\(+\sqrt{\left(2-3\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=\left(2-2\right)+\left(-\sqrt{2}+3\sqrt{2}\right)\)
\(=0+2\sqrt{2}\)\(=2\sqrt{2}\)
\(\sqrt{17-12\sqrt{2}}\)\(+\sqrt{9+4\sqrt{2}}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)\(+\sqrt{\left(2\sqrt{2}+1\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)\(+\left|2\sqrt{2}+1\right|\)
\(=3-2\sqrt{2}\)\(+2\sqrt{2}+1\)
\(=\left(3+1\right)+\left(-2\sqrt{2}+2\sqrt{2}\right)\)
\(=4+0=4\)
Ta có :
\(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-\sqrt{128}}}}\)
Ta có :
\(18-\sqrt{128}=18-8\sqrt{2}=16-2.4.\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
Vậy
\(\sqrt{18-\sqrt{128}}=4-\sqrt{2}\)
Thay vào ta có
\(\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-\sqrt{128}}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
Lại có :
\(4+2\sqrt{3}=3+2.1.\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)
Do đó :
\(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Vậy :
\(\sqrt{6-2\sqrt{4+2\sqrt{3}}}=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2.1.\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
Vậy : \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}=\sqrt{3}-1\)
Căn (35 + 12.căn 6)
= căn(27 + 12.căn6 + 8)
= căn(3.căn3 + 2.căn2)²
= 3.căn3 + 2.căn2
\(\sqrt{35+2\sqrt{6^2\times6}}\)=\(\sqrt{8+2\sqrt{8}\sqrt{27}+27}\)=\(\sqrt{\left(2\sqrt{2}+3\sqrt{3}\right)^2}\)=\(2\sqrt{2}+3\sqrt{3}\)