Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tu \(-\sqrt{30}\) den \(\sqrt{30}\) co 5 so nguyen chia het cho 2 la -4;-2;0;2;4
Tu \(\sqrt{5}\) den \(\sqrt{60}\) co 2 so nguyen chia het cho 3 la 3;6
Tu $-\sqrt{30}$ den $\sqrt{30}$
co 5 so nguyen chia het cho 2 la -4;-2;0;2;4
Tu $\sqrt{5}$
den $\sqrt{60}$ co 2 so nguyen chia het cho 3 la 3;6
\(A\left(\sqrt{2};\sqrt{2}\right)\Rightarrow x=\sqrt{2};y=\sqrt{2}\) Thay vào hàm số \(y=\left(\sqrt{a}-2\right)x\) ta được :
\(\sqrt{2}=\left(\sqrt{a}-2\right)\sqrt{2}\)
\(\Rightarrow\sqrt{a}-2=1\)
\(\Rightarrow\sqrt{a}=3\)
\(\Rightarrow a=9\)
Vậy \(a=9\)
ABCd là hình vuông nên
AB=BC=\(3\sqrt{2}\left(cm\right)\)
áp dụng định lý py-ta-go vào tam giác ABC vuông tại B có:
AC2=AB2+BC2
AC2=2.\(\left(3\sqrt{2}\right)^2\)
AC2=36
=>AC=6(cm)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
= 1/18
k cho mk nha
@@ ^_^
=577,349... bn nhe