K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

a, Ta có : \(\left\{{}\begin{matrix}\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\end{matrix}\right.\)

- Thay lần lượt vào A ta được :

\(A=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)=2.2\sqrt{2}=4\sqrt{2}\)

b, \(B=\sqrt{2+\sqrt{3}}\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}=\sqrt{2+\sqrt{3}}\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{3}}=\sqrt{4-3}=\sqrt{1}=1\)

c, \(C=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

\(=\dfrac{2\sqrt{2}+\sqrt{6}-2\sqrt{2-\sqrt{3}}-\sqrt{3}\sqrt{2-\sqrt{3}}+2\sqrt{2}-\sqrt{6}+2\sqrt{2+\sqrt{3}}-\sqrt{3}\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

\(=\dfrac{4\sqrt{2}-2\sqrt{3}\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

 

a) Ta có: \(A=\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)

\(=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)\)

\(=2\cdot2\sqrt{2}=4\sqrt{2}\)

 

 

loading...  loading...  

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Đặt \(\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}=a; \sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}=b\)

Có:

\(a^2+b^2=(2+\sqrt{3}+\sqrt{2-\sqrt{3}})+(2+\sqrt{3}-\sqrt{2-\sqrt{3}})=2(2+\sqrt{3})\)

\(=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\)

\(ab=\sqrt{(2+\sqrt{3}+\sqrt{2-\sqrt{3}})(2+\sqrt{3}-\sqrt{2-\sqrt{3}})}\)

\(=\sqrt{(2+\sqrt{3})^2-(2-\sqrt{3})}=\sqrt{5+5\sqrt{3}}\)

Như vậy:

\(\frac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\frac{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}=\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)

\(=\frac{(\sqrt{3}+1)^2}{\sqrt{5+5\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt{5}.\sqrt{\sqrt{3}+1}}=\frac{(\sqrt{3}+1)^{1.5}}{\sqrt{5}}\)

17 tháng 8 2019

\(H=\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)

\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)\(-\frac{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)(cái này cùng dòng với cái phía trên)

\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)

\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{2\sqrt{3}}\)

\(H=\frac{-4}{2\sqrt{3}}\)

\(H=\frac{-2}{\sqrt{3}}\)

\(H=-\frac{2\sqrt{3}}{3}\)

17 tháng 8 2019

Đặt \(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(A^2=2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)

\(A^2=4+2\sqrt{4+2\sqrt{3}-2\sqrt{3}-3}\)

\(A^2=4+2=6\)

\(A=\sqrt{6}\)

Đặt \(B=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

\(B^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)

\(B^2=4-2\sqrt{4+2\sqrt{3}-2\sqrt{3}-3}\)

\(B^2=4-2\sqrt{1}=4-2=2\)

\(B=\sqrt{2}\)

Thay vào H 

\(\Rightarrow H=\frac{\sqrt{2}}{\sqrt{6}}-\frac{\sqrt{6}}{\sqrt{2}}=\frac{1}{\sqrt{3}}-\sqrt{3}=\frac{1-3}{\sqrt{3}}=\frac{-2}{\sqrt{3}}\)

5 tháng 8 2019

a) \(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{\left(2+\sqrt{3}\right)^2}{4-3}\)

\(=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)

\(\frac{5+2\sqrt{6}}{5-2\sqrt{6}}=\frac{\left(5+2\sqrt{6}\right)^2}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}=\frac{\left(5+2\sqrt{6}\right)^2}{25-24}\)

\(=\left(5+2\sqrt{6}\right)^2=49+20\sqrt{6}\)

b) \(\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3-2\sqrt{3}+1}{3-1}\)

\(=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)

c) \(\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2+\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}=14\)

d) \(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}\)

\(=\frac{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)}\)

\(=\frac{2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}-\left(2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\right)}{2+\sqrt{3}-\left(2-\sqrt{3}\right)}\)

\(=\frac{4\sqrt{4-3}}{2\sqrt{3}}=\frac{4}{2\sqrt{3}}=\frac{2}{\sqrt{3}}\)

a: \(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=1\)

b: \(=\sqrt{2+\sqrt{2}}\cdot\sqrt{3+\sqrt{7+\sqrt{2}}}\cdot\sqrt{9-6-\sqrt{7+\sqrt{2}}}\)

\(=\sqrt{2+\sqrt{2}}\cdot\sqrt{9-7-\sqrt{2}}\)

\(=\sqrt{2}\)

1 tháng 8 2019

Đặt A = \(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)

=> \(A^2=\frac{2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}}{2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}}\)\(=\frac{4+2\sqrt{4-3}}{4-2\sqrt{4-3}}=\frac{4+2}{4-2}=\frac{6}{2}=3\)

=>A = \(\sqrt{3}\)

Chứng minh tương tự B = \(\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}=\frac{1}{\sqrt{3}}\)

=> A + B = \(\sqrt{3}+\frac{1}{\sqrt{3}}=\frac{4}{\sqrt{3}}\)

1 tháng 8 2019

mình nhầm nhé đề bài là trừ nên cuối bài sửa lại là A - B = 2/căn3

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

1. Sửa đề:

\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\frac{(\sqrt{2+\sqrt{3}})^2+(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}\)

\(=\frac{2+\sqrt{3}+2-\sqrt{3}}{\sqrt{2^2-3}}=\frac{4}{1}=4\)

 

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

2.

\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}\)

\(=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=\frac{2\sqrt{3}}{1}=2\sqrt{3}\)