\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

A = \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

=> A3 = 40 + 6A

<=> A = 4

26 tháng 1 2017

\(Q=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

\(=\sqrt[3]{8+12\sqrt{2}+12+2\sqrt{2}}+\sqrt[3]{8-12\sqrt{2}+12-2\sqrt{2}}\)

\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)

\(=2+\sqrt{2}+2-\sqrt{2}=4\)

Làm tiếp nhé

19 tháng 4 2019

\(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\Leftrightarrow A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\Leftrightarrow A^3=4+3\sqrt[3]{-1}.A\Leftrightarrow A^3=4-3A\Leftrightarrow A^3+3A-4=0\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)(1)

Ta có \(A^2+A+4>0\)

Vậy (1)\(\Leftrightarrow A-1=0\Leftrightarrow A=1\)

Vậy A=1

\(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Leftrightarrow B^3=5\sqrt{2}+7-5\sqrt{2}+7-3\sqrt[3]{\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)}\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)\Leftrightarrow B^3=14-3\sqrt[3]{1}.B\Leftrightarrow B^3=14-3B\Leftrightarrow B^3+3B-14=0\Leftrightarrow\left(B-2\right)\left(B^2+2B+7\right)=0\left(2\right)\)

Ta lại có \(B^2+2B+7>0\)

Vậy (2)\(\Leftrightarrow B-2=0\Leftrightarrow B=2\)

Vậy B=2

\(C=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.\left(\sqrt{2}\right)^2.2+3.\sqrt{2}.4+8}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.\left(\sqrt{2}\right)^2.2+3.\sqrt{2}.4-8}=\sqrt[3]{\left(\sqrt{2}+2\right)^2}-\sqrt[3]{\left(\sqrt{2}-2\right)}=\sqrt{2}+2-\sqrt{2}+2=4\)

20 tháng 8 2017

A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

=\(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)

=\(2+\sqrt{2}+2-\sqrt{2}=4=2\sqrt{2}\)

ta thấy : 2\(\sqrt{5}>2\sqrt{2}\)

=> B>A

18 tháng 12 2022

a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)

=>A^3-3A-18=0

=>A=3

b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)

=>B^3-3B-14=0

=>B=2,82

c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)

=>C^3+6C-40=0

=>C=2,84

NV
10 tháng 4 2019

\(A=\sqrt[3]{2^3+3.2^2.\sqrt{2}+3.2.\sqrt{2}^2+\sqrt{2}^3}+\sqrt[3]{\sqrt{2}^3-3.\sqrt{2}^2.2+3.\sqrt{2}.2^2-2^3}\)

\(A=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(\sqrt{2}-2\right)^3}\)

\(A=2+\sqrt{2}+\sqrt{2}-2=2\sqrt{2}\)

\(X=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)

\(\Rightarrow X^3=\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)^3\)

\(\Rightarrow X^3=2+3\sqrt[3]{1-\frac{84}{81}}\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)\)

\(\Rightarrow X^3=2-3\sqrt[3]{\frac{1}{27}}.X\)

\(\Rightarrow X^3=2-X\)

\(\Rightarrow X^3+X-2=0\)

\(\Rightarrow\left(X-1\right)\left(X^2+2X+2\right)=0\)

\(\Rightarrow X=1\) (do \(X^2+2X+2=\left(X+1\right)^2+1>0\) \(\forall X\))

27 tháng 10 2019

a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)

=>  \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)

\(=20+14\sqrt{2}+20-14\sqrt{2}\)

\(+3\left(\text{​​}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)

\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)

\(\Rightarrow A^3=40+3.A.2\)

=> \(A^3-6A-40=0\)

<=> \(A^3-16A+10A-40=0\)

<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)

<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)

<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))

Vậy A = 4.

b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)

=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)

\(=26+15\sqrt{3}-26+15\sqrt{3}\)

\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)

\(=30\sqrt{3}-3B.1\)

=> \(B^3+3B-30\sqrt{3}=0\)

<=> \(B^3-12B+15B-30\sqrt{3}=0\)

<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)

<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)

<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))

<=> \(B=2\sqrt{3}\)

22 tháng 7 2018

\(A=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{2\sqrt{2}+3.2.2+3.\sqrt{2}.4+8}+\sqrt[3]{8-3.\sqrt{2}.4+3.2.2-2\sqrt{2}}=\sqrt[3]{\left(\sqrt{2}+2\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=\sqrt{2}+2+2-\sqrt{2}=4=\sqrt{16}\) \(B=2\sqrt{5}=\sqrt{20}\)

\(A< B\)

22 tháng 7 2018

\(A=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

\(A^3=20+14\sqrt{2}+20-14\sqrt{2}+3\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right).\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\)\(A^3=40+6A\)

\(\Leftrightarrow A^3-6A-40=0\)

\(\Leftrightarrow A^3-4A^2+4A^2-16A+10A-40=0\)

\(\Leftrightarrow A^2\left(A-4\right)+4A\left(A-4\right)+10\left(A-4\right)=0\)

\(\Leftrightarrow\left(A-4\right)\left(A^2+4A+10\right)=0\)

Do: \(A^2+4A+10=\left(A+2\right)^2+6\)

\(\Leftrightarrow A=4=\sqrt{16}< B=2\sqrt{5}=\sqrt{20}\)

\(\Rightarrow A< B\)