![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$
![](https://rs.olm.vn/images/avt/0.png?1311)
1) ĐKXĐ: \(16x^2-25\ge0\)
\(\Leftrightarrow x^2\ge\dfrac{25}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{4}\\x\le-\dfrac{5}{4}\end{matrix}\right.\)
2) ĐKXĐ: \(4x^2-49\ge0\Leftrightarrow x^2\ge\dfrac{49}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{7}{2}\\x\le-\dfrac{7}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(8-x^2\ge0\Leftrightarrow x^2\le8\)
\(\Leftrightarrow-2\sqrt{2}\le x\le2\sqrt{2}\)
4) ĐKXĐ: \(x^2-12\ge0\Leftrightarrow x^2\ge12\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\sqrt{3}\\x\le-2\sqrt{3}\end{matrix}\right.\)
5) ĐKXĐ: \(x^2+4\ge0\left(đúng\forall x\right)\)