Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt biểu thức là A
<=>\(\sqrt{2}\)A = \(\sqrt{4+2\sqrt{3}}\)- 2 . \(\sqrt{3}\)+1
= \(\sqrt{\left(\sqrt{3}+1\right)^2}\) - 2.\(\sqrt{3}\)+1 = \(\sqrt{3}\)+ 1 - \(2\sqrt{3}\) + 1 = 2-\(\sqrt{3}\)
1. \(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-3\right)^2}\\ =3-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}\\ =2\sqrt{6}-3+3+\sqrt{6}=3\sqrt{6}\)
1.\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}+\sqrt{21-12\sqrt{3}}}=\sqrt{12-6\sqrt{3}+\sqrt{\left(3-2\sqrt{3}\right)^2}}\)
\(=\sqrt{12-6\sqrt{3}+2\sqrt{3}-3}=\sqrt{9-4\sqrt{3}}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3+3-\sqrt{6}=\sqrt{6}\)
a) \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
b) \(\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
a) \(\sqrt{11-2\sqrt{10}}=\sqrt{1^2-2\sqrt{10}.1+\left(\sqrt{10}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{10}\right)^2}=\left|1-\sqrt{10}\right|=\sqrt{10}-1\) (Vì \(\sqrt{10}>\sqrt{1}=1\))
b) \(\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.\sqrt{7}+\left(\sqrt{7}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}=\left|\sqrt{2}-\sqrt{7}\right|=\sqrt{7}-\sqrt{2}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{1+2\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{1-2\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
= |1+căn 3| - |1- căn 3|
= 1 + căn 3 - căn 3 + 1
= 2
\(a,\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{2}\)
\(=\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}=1\)
\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{25}=5\)
\(=\left(6-2\sqrt{5}\right)\cdot\left(\sqrt{5}+1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=\left(6-2\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)
=36-20
=16