K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Ta có: \(30< 36\)

=> \(\sqrt{30}< \sqrt{36}=6\)

=> \(\sqrt{30+\sqrt{30}}< \sqrt{30+6}=6\)

=> \(\sqrt{30+\sqrt{30+\sqrt{30}}}< \sqrt{30+6}=6\)

Cứ tiếp tực như vậy ta sẽ so sánh đc:

\(\sqrt{30+\sqrt{30+\sqrt{30+...+\sqrt{30}}}}< 6\)

23 tháng 7 2021

1.

 Ta có: \(A=\sqrt{31-2\sqrt{30}}=\sqrt{\left(\sqrt{30}-1\right)^2}=\left|\sqrt{30}-1\right|=\sqrt{30}-1\)

\(B=\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\left|\sqrt{6}-\sqrt{5}\right|=\sqrt{6}-\sqrt{5}\)

\(C=\sqrt{13-2\sqrt{30}}=\sqrt{\left(\sqrt{10}-\sqrt{3}\right)^2}=\left|\sqrt{10}-\sqrt{3}\right|=\sqrt{10}-\sqrt{3}\)

\(D=\sqrt{39-6\sqrt{30}}=\sqrt{\left(\sqrt{30}-3\right)^2}=\left|\sqrt{30}-3\right|=\sqrt{30}-3\)

\(A=\sqrt{31-2\sqrt{30}}=\sqrt{30}-1\)

\(B=\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)

\(C=\sqrt{13-2\sqrt{30}}=\sqrt{10}-\sqrt{3}\)

\(D=\sqrt{39-6\sqrt{30}}=\sqrt{30}-3\)

23 tháng 7 2021

1.

Ta có: \(E=\sqrt{37-6\sqrt{30}}=\sqrt{\left(3\sqrt{3}-\sqrt{10}\right)^2}=\left|3\sqrt{3}-\sqrt{10}\right|=3\sqrt{3}-\sqrt{10}\)

\(F=\sqrt{51-6\sqrt{30}}=\sqrt{\left(3\sqrt{5}-\sqrt{6}\right)^2}=\left|3\sqrt{5}-\sqrt{6}\right|=3\sqrt{5}-\sqrt{6}\)

\(G=\sqrt{59-6\sqrt{30}}=\sqrt{\left(3\sqrt{6}-\sqrt{5}\right)^2}=\left|3\sqrt{6}-\sqrt{5}\right|=3\sqrt{6}-\sqrt{5}\)

\(H=\sqrt{17-2\sqrt{30}}=\sqrt{\left(\sqrt{15}-\sqrt{2}\right)^2}=\left|\sqrt{15}-\sqrt{2}\right|=\sqrt{15}-\sqrt{2}\)

\(E=\sqrt{37-6\sqrt{30}}\\ =\sqrt{\left(3\sqrt{3}-\sqrt{10}\right)^2}\\ =\left|3\sqrt{3}-\sqrt{10}\right|\\ =3\sqrt{3}-\sqrt{10}\)

\(F=\sqrt{51-6\sqrt{30}}\\ =\sqrt{\left(3\sqrt{5}-\sqrt{6}\right)^2}\\ =\left|3\sqrt{5}-\sqrt{6}\right|\\ =3\sqrt{5}-\sqrt{6}\)

\(G=\sqrt{59-6\sqrt{30}}\\ =\sqrt{\left(3\sqrt{6}-\sqrt{5}\right)^2}\\ =\left|3\sqrt{6}-\sqrt{5}\right|\\ =3\sqrt{6}-\sqrt{5}\)

\(H=\sqrt{17-2\sqrt{30}}\\ =\sqrt{\left(\sqrt{15}-\sqrt{2}\right)^2}\\ =\left|\sqrt{15}-\sqrt{2}\right|=\sqrt{15}-\sqrt{2}\)

27 tháng 12 2021

undefined

2 tháng 10 2021

\(a,=\sqrt{\dfrac{81}{25}}=\dfrac{9}{5}\\ b,\approx6,39\\ c,=\sqrt{8,1\cdot20\cdot8}=\sqrt{81\cdot16}=\sqrt{81}\cdot\sqrt{16}=9\cdot4=36\\ d,=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\\ =\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}=2\sqrt{5}\)

2 tháng 10 2021

a) \(\sqrt{3\dfrac{6}{25}}=\sqrt{\dfrac{81}{25}}=\dfrac{9}{5}\)

b) \(\sqrt[3]{216}=6\)

c) \(\sqrt{8,1}.\sqrt{20}.\sqrt{8}=\dfrac{9\sqrt{10}}{10}.2\sqrt{5}.2\sqrt{2}=36\)

d) \(\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}=2\sqrt{5}\)

3 tháng 8 2016

Có: \(\left(\sqrt{30+12\sqrt{6}}-\sqrt{30-12\sqrt{6}}\right)^2\)

\(=30+12\sqrt{6}-2\sqrt{\left(30+12\sqrt{6}\right)\left(30-12\sqrt{6}\right)}+30-12\sqrt{6}\)

\(=60-2\sqrt{30^2-12^2\cdot6}\)          (hằng đẳng thức số 3)

\(=60-2\sqrt{36}=60-2\cdot6=60-12=48\)

=>\(\sqrt{30+12\sqrt{6}}-\sqrt{30-12\sqrt{6}}=\sqrt{48}=4\sqrt{3}\)

 

3 tháng 8 2016

Sao lại đưa 2 vế vào trong ngoặc rồi bình lên ạ?

29 tháng 1 2018

Đặt \(A=\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)

\(\Leftrightarrow A^2=11-2\sqrt{30}+11+2\sqrt{30}-2\sqrt{\left(11-2\sqrt{30}\right)\left(11+2\sqrt{30}\right)}\)

\(\Leftrightarrow A^2=22-2\sqrt{11^2-\left(2\sqrt{30}\right)^2}\)

\(\Leftrightarrow A^2=22-2=20\)

\(\Leftrightarrow A=\pm\sqrt{20}\)

29 tháng 1 2018

\(\sqrt{11-2\sqrt{30}}< \sqrt{11+2\sqrt{30}}\)

Nên A chỉ nhận giá trị \(-\sqrt{20}\)