\(\sqrt{3-\sqrt{5}}\)+\(\sqrt{3+\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

Đặt \(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(A^2=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

\(A^2=3-\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)}+3+\sqrt{5}\)

\(A^2=6+2\sqrt{9-5}\)

\(A^2=6+2\sqrt{4}\)

\(A^2=6+2.2\)

\(A^2=6+4\)

\(A^2=10\)

\(\Rightarrow A=\sqrt{10}\)

Vậy \(A=\sqrt{10}\)

15 tháng 8 2018

a) \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

16 tháng 8 2018

ok  mk giải dk tối qua rồi , dù s cx thanks

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

19 tháng 6 2019

a/ \(A=\sqrt{6-2\sqrt{5}}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1^2}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\)\(=\sqrt{5}-1-\sqrt{5}\)\(=-1.\)

Bạn kiểm tra lại câu b với c đi, hình như sai đề rồi.

22 tháng 6 2017

=\(\sqrt{3-\sqrt{5}}\)\(\sqrt{2}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))

=\(\sqrt{6-2\sqrt{5}}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))

=\(\sqrt{\left(\sqrt{5}+1\right)^2}\)(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))

=(\(\sqrt{5}+1\))(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))

=4(\(3+\sqrt{5}\))

=12+4\(\sqrt{5}\)

17 tháng 11 2019

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căna) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0Bài 2: Đưa thừa số vào trong dấu căn a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)     ...
Đọc tiếp

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căn

a) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)

b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0

Bài 2: Đưa thừa số vào trong dấu căn 

a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)      c) x.\(\sqrt{\frac{21}{xy}}\)với x ; y >0        d) x.\(\sqrt{\frac{-39}{x}}\)với x < 0

Bài 3: Sắp xếp theo thứ tự tăng dần 

a) \(5\sqrt{2};2\sqrt{5};2\sqrt{3};3\sqrt{2}\)                  b) \(4\sqrt{2};\sqrt{37};3\sqrt{7};2\sqrt{15}\)

 

c) \(\sqrt{27};6\sqrt{\frac{1}{3}};2\sqrt{28};5\sqrt{7}\)            c) \(3\sqrt{6};2\sqrt{7};\sqrt{39};5\sqrt{2}\)

 

Bài 4: So sánh 

a) \(\sqrt{15}-\sqrt{14}\)và \(\sqrt{14}-\sqrt{13}\)     b) \(\sqrt{105}-\sqrt{101}\) và \(\sqrt{101}-\sqrt{97}\)

Bài 5: Rút gọn

a) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)            c ) \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\) với    \(a\ge0\)

b) \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)        d) \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\) với \(b\ge0\)

 

 

 

 

 

 

 

 

 

0
AH
Akai Haruma
Giáo viên
12 tháng 7 2018

1)

ĐK: \(x\geq 2\)

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)

\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)

\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)

Vậy $x=2$ là nghiệm của pt

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

2) ĐK: \(x\geq 1\)

Ta có: \(x+\sqrt{x-1}=13\)

\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)

\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)

\(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)

\(\Rightarrow \sqrt{x-1}=3\)

\(\Rightarrow x=3^2+1=10\) (thỏa mãn)

Vậy.......