\(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)

Giúp em giải pt nha

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

nhan lien hop ve trai

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

21 tháng 1 2018

Đặt \(\sqrt{2x^2+5x+12}=a\text{ và }\sqrt{2x^2+3x+2}=b\left(a\text{ và }b\ge0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=x+5\left(\text{✳}\right)\\a^2-b^2=2\left(x+5\right)\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=2\left(a+b\right)\)

\(\Rightarrow a=b+2\text{. Thay vào }\left(\text{✳}\right)\)

\(\Rightarrow\left(b+2\right)+b=x+5\)

\(\Leftrightarrow b=\dfrac{x+3}{2}\)

\(\Rightarrow2\sqrt{2x^2+3x+2}=x+3\)

\(\Leftrightarrow8x^2+12x+8=x^2+6x+9\)

\(\Leftrightarrow\left(7x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-1\end{matrix}\right.\)

☠ Bạn tự kết luận nha >..<"

6 tháng 2 2016

2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )

Vt >/ 3 + 2 = 5

 VP </ 5 

dấu = xảy ra  khi x =-1

6 tháng 2 2016

Dùng Hằng Đẳng Thức thôi bạn ạ

2 tháng 12 2018

Chỗ dòng thứ 3:

b2=2x2+3x+2 nhé

Bài trên do cô giáo hướng dẫn cho mình,bây h mình trả lời cho chính câu hỏi của mình để các bạn có thể tham khảo.

2 tháng 12 2018

Đặt a=\(\sqrt{2x^2+5x+12}\)

b=\(\sqrt{2x^2+3x+2}\)

=>a2=2x2+5x+12 và b2=2x2+2x+2

Ta có a+b=x+5. (1)

.a2-b2=2(x+5)

<=>a2-b2=2(a+b)

<=> a-b=2. (2)

Cộng (1) và (2) vế theo vế

ta được 2a=x+7

<=>2\(\sqrt{2x^2+5x+12}\)=x+7

<=>4(2x2+5x+12)=x2+14x+49

<=>7x2+6x-1=0

<=>(x+1)(7x-1)=0

<=>\(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\) vậy pt có 2 nghiệm-1;-\(\dfrac{1}{7}\)

27 tháng 10 2015

\(y=\frac{1}{x^2+\sqrt{x}}\left(nvb\int^{42}_{3^{2_{1\frac{12}{23}}}}\right)\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

NV
24 tháng 11 2018

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

24 tháng 11 2018

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)

27 tháng 6 2017

1) Đk: x khác -3

x khác 1

Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)

\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

kl: x thuộc {-3;2}

27 tháng 6 2017

@Nguyễn Thị Giang Thanh

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi