Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\) (ĐKXĐ: \(x\in R,x\le2\))
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x^2+6x+7\right)}+\sqrt{\left(2-x\right)\left(5x^2+10x+14\right)}-\left(4-2x-x^2\right)\sqrt{2-x}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}-4+2x+x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\left(1\right)\end{cases}}\)
Pt \(\left(1\right)\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(2\right)\)
Ta có: \(\left(x+1\right)^2\ge0\Rightarrow\sqrt{2\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Tương tự: \(\sqrt{5\left(x+1\right)^2+9}\ge3\). Từ đó: \(VT_{\left(2\right)}\)\(\ge2+3=5\)
Mà \(VP_{\left(2\right)}=-\left(x+1\right)^2+5\le5\) nên dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)(tm)
Vậy tập nghiệm của pt cho là \(S=\left\{2;-1\right\}.\)
2.
ĐKXĐ: \(x\geq -2\)
Ta có : \(\sqrt{x+9}=5-\sqrt{2x+4}\)
\(\Leftrightarrow (\sqrt{x+9}-3)+(\sqrt{2x+4}-2)=0\)
\(\Leftrightarrow \frac{x}{\sqrt{x+9}+3}+\frac{2x}{\sqrt{2x+4}+2}=0\) (liên hợp)
\(\Leftrightarrow x(\frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2})=0\)
Với mọi $x\geq -2$, ta thấy \(\frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2}>0\)
\(\Rightarrow \frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2}\neq 0\)
Do đó: \(x=0\) là nghiệm duy nhất của PT
3. ĐKXĐ: \(x\geq -1\)
\(x^2+\sqrt{x+1}=1\)
\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)
\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)
\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow x=-1\) (thỏa mãn)
Với \((2)\Leftrightarrow (x-1)\sqrt{x+1}=-1\Rightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ (x-1)^2(x+1)=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ (x-1)^2(x+1)=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ x(x^2-x-1)=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;0;\frac{1-\sqrt{5}}{2}\right\}\)
4.
ĐKXĐ: \(x\geq \frac{3}{4}\)
\(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow (x-7)-(\sqrt{4x-3}-5)=0\)
\(\Leftrightarrow (x-7)-\frac{4x-3-5^2}{\sqrt{4x-3}+5}=0\)
\(\Leftrightarrow (x-7)-\frac{4(x-7)}{\sqrt{4x-3}+5}=0\)
\(\Leftrightarrow (x-7)\left(1-\frac{4}{\sqrt{4x-3}+5}\right)=0\)
\(\Leftrightarrow (x-7).\frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}=0\)
Dễ thấy \(\frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}>0, \forall x\geq \frac{3}{4}\Rightarrow \frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}\neq 0\)
Do đó: \(x-7=0\Leftrightarrow x=7\) là nghiệm duy nhất của pt
5.
ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow \sqrt{2x+15}=-x\)
\(\Rightarrow \left\{\begin{matrix} -x\geq 0\\ 2x+15=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-15=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ (x-5)(x+3)=0\end{matrix}\right.\Rightarrow x=-3\)
Vậy..........
6. ĐKXĐ: \(x^2-6x+7\geq 0\)
PT \(\Leftrightarrow (x^2-6x+7)+\sqrt{x^2-6x+7}-12=0\)
Đặt \(\sqrt{x^2-6x+7}=a(a\geq 0)\) thì pt trở thành:
\(a^2+a-12=0\)
\(\Leftrightarrow (a-3)(a+4)=0\Rightarrow \left[\begin{matrix} a=3\\ a=-4\end{matrix}\right.\)
Vì $a\geq 0$ nên $a=3$
\(\Leftrightarrow \sqrt{x^2-6x+7}=3\)
\(\Leftrightarrow x^2-6x+7=9\)
\(\Leftrightarrow x^2-6x-2=0\Rightarrow x=3\pm \sqrt{11}\) (đều thỏa mãn)
Vậy........
\(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)
Đặt \(\sqrt{2x^2+3x+2}=a;\sqrt{4x^2+6x+21}=b\left(a,b>0\right)\)
Ta có hệ pt :\(\hept{\begin{cases}a+b=11\\b^2-2a^2=17\end{cases}}\)
Đến đây sd pp thế là được nha
a/ ĐKXĐ:...
\(\Leftrightarrow4x^2-4x\sqrt{2x-1}-3x^2+6x-3=0\)
\(\Leftrightarrow4x\left(x-\sqrt{2x-1}\right)-3\left(x-1\right)^2=0\)
\(\Leftrightarrow\frac{4x\left(x-1\right)^2}{x+\sqrt{2x-1}}-3\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{4x}{x+\sqrt{2x-1}}=3\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4x=3x+3\sqrt{2x-1}\)
\(\Leftrightarrow x=3\sqrt{2x-1}\)
\(\Leftrightarrow x^2-18x+9=0\) \(\Rightarrow9\pm6\sqrt{2}\)
Vậy pt có 3 nghiệm....
b/ ĐKXĐ:...
\(\Leftrightarrow4x^2-4x\sqrt{4x-3}-x^2+4x-3=0\)
\(\Leftrightarrow4x\left(x-\sqrt{4x-3}\right)-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\frac{4x\left(x^2-4x+3\right)}{x+\sqrt{4x-3}}-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\Rightarrow x=...\\\frac{4x}{x+\sqrt{4x-3}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4x=x+\sqrt{4x-3}\)
\(\Leftrightarrow3x=\sqrt{4x-3}\)
\(\Leftrightarrow9x^2-4x+3=0\) (vô nghiệm)
Vậy...
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a: =>|x-2|+|x-3|=1
TH1: x<2
Pt sẽ là 2-x+3-x=1
=>5-2x=1
=>x=2(loại)
TH2: 2<=x<3
Pt sẽ là x-2+3-x=1
=>1=1(nhận)
TH3: x>=3
Pt sẽ là x-2+x-3=1
=>2x=6
=>x=3(nhận)
b: ĐKXĐ: x>=-2
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
TH1: \(\sqrt{x+2}< 2\Leftrightarrow0< =x+2< 4\Leftrightarrow-2< =x< 2\)
Pt sẽ là \(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
=>5-2 căn x+2=1
=>2 căn x+2=4
=>x+2=4
=>x=2(loại)
TH2: 2<=căn x+2<3
=>4<=x+2<9
=>2<=x<7
Pt sẽ là \(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
=>1=1(nhận)
TH3: căn x+2>=3
=>x+2>=9
=>x>=7
Pt sẽ là \(\sqrt{x+2}-3+\sqrt{x+2}-2=1\)
=>2 căn x+2=6
=>x+2=9
=>x=7(nhận)
Đặt \(\sqrt{2x^2+3x+2}=t>0\)
\(\Rightarrow4x^2+6x+21=2t^2+17\)
Phương trình trở thành:
\(t+\sqrt{2t^2+17}=11\Leftrightarrow\sqrt{2t^2+17}=11-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}11-t\ge0\\2t^2+17=\left(11-t\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\le11\\t^2+22t-104=0\end{matrix}\right.\)
\(\Rightarrow t=4\Leftrightarrow2x^2+3x+2=16\)
\(\Leftrightarrow2x^2+3x-14=0\)
\(\Leftrightarrow...\)