Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(\sqrt{x^2}=x\)
\(\Leftrightarrow\left|x\right|=x\)
hay \(x\ge0\)
d: Ta có: \(\sqrt{x^2-2x+1}=x-1\)
\(\Leftrightarrow\left|x-1\right|=x-1\)
hay \(x\ge1\)
\(\sqrt[]{8x^2-16x+10}+\sqrt[]{2x^2-4x+10}=\sqrt[]{7-x^2+2x}\)
\(\Leftrightarrow\sqrt[]{8x^2-16x+10}=\dfrac{1}{4}\sqrt[]{2\left(7-x^2+2x\right)}-\sqrt[]{2x^2-4x+10}\)
\(\Leftrightarrow\sqrt[]{8x^2-16x+10}=\dfrac{1}{4}\sqrt[]{14-2x^2+4x}-\sqrt[]{2x^2-4x+10}\left(1\right)\)
Áp dụng BĐT Bunhiacopxki ta được:
\(\left[\dfrac{1}{4}\sqrt[]{14-2x^2+4x}+\left(-1\right).\sqrt[]{2x^2-4x+10}\right]^2\le\left(\dfrac{1}{16}+1\right)\left(14-2x^2+4x+2x^2-4x+10\right)=\dfrac{17}{16}.24=\dfrac{51}{2}\)
Dấu "=" xảy ra khi và chỉ khi
\(\sqrt[]{14-2x^2+4x}+4\sqrt[]{2x^2-4x+10}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}14-2x^2+4x=0\\2x^2-4x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}14+2-2\left(x^2-2x+1\right)=0\\2\left(x^2-2x+1\right)+10-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(x-1\right)^2+16=0\\2\left(x-1\right)^2+8=0\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
\(pt\left(1\right)\Leftrightarrow8x^2-16x+10=\dfrac{51}{2}\)
\(\Leftrightarrow16x^2-32x+20-51=0\)
\(\Leftrightarrow16x^2-32x-31=0\left(2\right)\)
\(\Delta'=256+496=752>0\)
\(\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{47}\)
\(pt\left(2\right)\) có 2 nghiệm phân biệt
\(x=\dfrac{16\pm4\sqrt[]{47}}{16}=\dfrac{4\pm\sqrt[]{47}}{4}\)
Cách giải trên đã sai, mình giải lại
\(\left(1\right)\Leftrightarrow\sqrt[]{8\left(x^2-2x+1\right)+2}+\sqrt[]{2\left(x^2-2x+1\right)+2}=\sqrt[]{8-\left(x^2-2x+1\right)}\)
\(\Leftrightarrow\sqrt[]{8\left(x-1\right)^2+2}+\sqrt[]{2\left(x-1\right)^2+2}=\sqrt[]{8-\left(x-1\right)^2}\left(2\right)\)
Vì \(\left(x-1\right)^2\ge0,\forall x\in R\)
\(\Rightarrow\left\{{}\begin{matrix}8\left(x-1\right)^2+2\ge2,\forall x\in R\\2\left(x-1\right)^2+2\ge2,\forall x\in R\\8-\left(x-1\right)^2\le8,\forall x\in R\end{matrix}\right.\)
Nên khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Thay \(x=1\) vào \(\left(2\right)\) ta được
\(\sqrt[]{8.0+2}+\sqrt[]{2.0+2}=\sqrt[]{8-0}\)
\(\Leftrightarrow\sqrt[]{2}+\sqrt[]{2}=\sqrt[]{8}=2\sqrt[]{2}\left(đúng\right)\)
Vậy nghiệm của phương trình đã cho là \(x=1\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3