\(\sqrt{2x-1}-1-\left(x-1\right)\sqrt{2x+1}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

a) x -\(\sqrt{2x-9}=0\) ĐKXĐ: x\(\ge\frac{9}{2}\)

<=> x=\(\sqrt{2x-9}\)

<=> x2=2x-9 (vì x>0)

<=> x2-2x+1=8

<=>(x-1)2=8

<=>\(\left[{}\begin{matrix}x-1=2\sqrt{2}\\x-1=-2\sqrt{2}\end{matrix}\right.\)

<=>x=\(2\sqrt{2}+1\)(vì x>0) (thỏa mãn)

8 tháng 8 2020

b) Cách làm cũng giống như thế :v

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(PT\Leftrightarrow\left(x-1\right)\left(\frac{4x+6}{\sqrt{2x-1}+1}+\frac{x}{\sqrt{x+3}+2}+x\right)=0\)

\(\Leftrightarrow x=1\) (TMĐK)

8 tháng 8 2020

a) ĐKXĐ: \(x\ge1\).

\(PT\Leftrightarrow x\left(\sqrt{x-1}-1\right)+\left(2x+1\right)\left(\sqrt{x+2}-2\right)+\left(x^3-4x^2+6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x}{\sqrt{x-1}+1}+\frac{2x+1}{\sqrt{x+2}+2}+x^2-2x+2\right)=0\)

\(\Leftrightarrow x=2\left(TMĐK\right)\)

30 tháng 7 2018

a)

DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)

=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)

\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

<=>25x+50=2x-1

=>23x=-51

=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)

=> phương trình vô nghiệm..

b)

ĐKXĐ:\(x\ge1,x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)

Vậy S={1;8}

c) ĐKXĐ:

\(x\ge0\)

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}=-11\)

\(\Leftrightarrow\sqrt{2x}=1\)

\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2018

Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )

\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)

\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow25\left(x+2\right)=2x-1\)

\(\Leftrightarrow25x+50=2x-1\)

\(\Leftrightarrow23x=-51\)

\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)

Vậy phương trình vô nghiệm .

Câu b :

\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy \(S=\left\{1;8\right\}\)

Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}+11=0\)

\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)

\(\Leftrightarrow\sqrt{2x}-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Chúc bạn học tốt

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

3 tháng 12 2017

Ta có \(a,\sqrt{9(x-1)}=21 \)

<=> \(3\sqrt{x-1}=21 \)

<=> \(\sqrt{x-1}=7 \)

<=>\(x-1=49\)

<=>x=50

b, \(\sqrt{4(x-1)^2}-6=0 \)

<=>\(2|x-1|-6=0\)

<=>\(|x-1|=3\)

<=>x=4 hoặc x=-2

c,\(\sqrt{(x-5)^2}=8 \)

<=>|x-5|=8

<=>x=-3 hoặc x=13

d,\(\sqrt{(2x-1)^2}=3 \)

<=>|2x-1|=3

=> x=2 hoặc x=-1

e, \(\sqrt{(2x+3)^2}=3 \)

<=>|2x+3|=3

=>x=0 hoặc x=-3

f, \(\sqrt{x^2-4x+4}=2x-3 \)

<=>\(\sqrt{(x-2)^2}=2x-3 \)

<=>|x-2|=2x-3

Với x-2=2x-3

=>x-1=0

<=>x=1

Với 2-x=2x-3

=>x=\(\frac{5}{3}\)