K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

\(=\frac{x-2\sqrt{x}+y+2\sqrt{y}-2\sqrt{xy}+1}{x-2\sqrt{xy}+y-1}\)\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1}{\left(\sqrt{x}-\sqrt{y}\right)^2-1}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}-1\right)^2}{\left(\sqrt{x}-\sqrt{y}+1\right)\left(\sqrt{x}-\sqrt{y}-1\right)}=\frac{\sqrt{x}-\sqrt{y}-1}{\sqrt{x}-\sqrt{y}+1}\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

NV
10 tháng 1 2021

\(VT=\sqrt{2\left(x^2+y^2\right)-2\left(x+y\right)\sqrt{x^2+y^2}+2xy}\)

\(=\sqrt{x^2+2xy+y^2-2\left(x+y\right)\sqrt{x^2+y^2}+x^2+y^2}\)

\(=\sqrt{\left(x+y\right)^2-2\left(x+y\right)\sqrt{x^2+y^2}+x^2+y^2}\)

\(=\sqrt{\left(x+y-\sqrt{x^2+y^2}\right)^2}\)

\(=x+y-\sqrt{x^2+y^2}\)

29 tháng 9 2019

*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.

a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)

Cộng 2 pt ta đc: x=1

Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)

Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)

Những câu sau làm ttự.

#Walker

24 tháng 3 2020

ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?limdim

NV
29 tháng 7 2021

\(a^2+b^2=\left(a+b-c\right)^2=a^2+\left(b-c\right)^2+2a\left(b-c\right)=b^2+\left(a-c\right)^2+2b\left(a-c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}b^2=\left(b-c\right)^2+2a\left(b-c\right)\\a^2=\left(a-c\right)^2+2b\left(a-c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)

\(=\dfrac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\dfrac{a-c}{b-c}\) (đpcm)

29 tháng 7 2021

em cảm ơn ạ! E ko ngờ lm thế này lun í 

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

27 tháng 2 2022

a, (3 ; -3)

27 tháng 2 2022

a, Với y >= 0 

hpt có dạng \(\left\{{}\begin{matrix}2x+y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=9\\y=x-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)(ktmđk)

Với y < 0 hpt có dạng 

\(\left\{{}\begin{matrix}2x-y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-6=-9\end{matrix}\right.\)(tm) 

b, bạn tự làm 

c, đk : x>= 3 

\(\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\\sqrt{x+3}-3\left|y-2\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\2\sqrt{x+3}-6\left|y-2\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7\left|y-2\right|=1\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y-2=\dfrac{1}{7}\\y-2=-\dfrac{1}{7}\end{matrix}\right.\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\)

bạn tự giải nốt nhé