K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

 Đk: x \(\le\)2028

Ta có: \(\sqrt{2028-x}+\sqrt{2093-x}+\sqrt{2268-x}=29\)

<=> \(\sqrt{2028-x}-4+\sqrt{2093-x}-9+\sqrt{2268-x}-16=0\)

<=> \(\frac{2028-x-16}{\sqrt{2028-x}+4}+\frac{2093-x-81}{\sqrt{2093-x}+9}+\frac{2268-x-256}{\sqrt{2268-x}+16}=0\)

<=> \(\left(2012-x\right).\left(\frac{1}{\sqrt{2028-x}+4}+\frac{1}{\sqrt{2093-x}+9}+\frac{1}{\sqrt{2268-x}+16}\right)=0\)

<=> x = 2012 (tm)

26 tháng 2 2020

\(\sqrt{2020-x}+\sqrt{2023-x}+\sqrt{2028-x}=6\)\(\left(x\le2020\right)\)

\(\Leftrightarrow\sqrt{2020-x}-1+\sqrt{2023-x}-2+\sqrt{2020-x}-3=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2020-x}-1\right)\left(\sqrt{2020-x}+1\right)}{\sqrt{2020-x}+1}\) \(+\frac{\left(\sqrt{2023-x}-2\right)\left(\sqrt{2023-x}+2\right)}{\sqrt{2023-x}+2}\)\(+\frac{\left(\sqrt{2028-x}-3\right)\left(\sqrt{2028-x}+3\right)}{\left(\sqrt{2028-x}+3\right)}\)=0

\(\Leftrightarrow\frac{2019-x}{\sqrt{2020-x}+1}+\frac{2019-x}{\sqrt{2023-x}+2}+\frac{2019-x}{\left(\sqrt{2028-x}+3\right)}\)=0

\(\Leftrightarrow\left(2019-x\right)\left(\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=2019\left(tm\right)\\\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}=0\left(2\right)\end{matrix}\right.\)

vì \(\sqrt{2020-x}\ge0\Rightarrow\frac{1}{\sqrt{2020-x}+1}>0\)

cmtt: \(\frac{1}{\sqrt[]{2023-x}+2}>0\)

\(\frac{1}{\sqrt{2028-x}+3}>0\)

=>\(\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}>0\)(3)

từ (2) và (3)=> vô lý

vậy x=2019 là nghiệm của phương trình

\(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

=1

Thay x=1 vào B, ta được:

\(B=-\sqrt{1}\cdot\left(\sqrt{1}-1\right)=0\)

5 tháng 7 2017

=\(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

5 tháng 7 2017

Mình gi rút gọn bạn tự hiểu nha:

\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

=\(\left(\sqrt{x}-\sqrt{y}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{x-y}\right).\frac{\sqrt{x}+\sqrt{y}}{x+y-\sqrt{xy}}\)

=\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x+y-\sqrt{xy}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)}{\left(x-y\right)\left(x+y-\sqrt{xy}\right)}\)

=

11 tháng 6 2017

x = \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

x = \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.3+3^2}\) - \(\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.3+3^2}\)

x = \(\sqrt{\left(2\sqrt{5}+3\right)^2}\) - \(\sqrt{\left(2\sqrt{5}-3\right)^2}\)

x = \(|\) \(2\sqrt{5}+3\) \(|\) - \(|\) \(2\sqrt{5}-3\) \(|\)

x = \(\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)\)

x = \(2\sqrt{5}+3-2\sqrt{5}+3\) = 6

11 tháng 6 2017

\(x=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(\Rightarrow x=\sqrt{\left(3+2\sqrt{5}\right)^2}-\sqrt{\left(3-2\sqrt{5}\right)^2}\)

\(\Rightarrow x=3+2\sqrt{5}-\left(2\sqrt{5}-3\right)\)

\(\Rightarrow x=3+2\sqrt{5}-2\sqrt{5}+3\)

\(\Rightarrow x=6\)

13 tháng 7 2018

\(ĐKXĐ:x\ge0,x\ne1\)

\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)

\(K=\left[\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x+2\sqrt{x}-\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\right]\)

\(K=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b.

Ta có: \(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=24+\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=24+\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=24+\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{5}+1}=24+1=25\)

Thay \(x=25\) vào \(K\) ta được:

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}=\dfrac{\sqrt{25}+1}{2.\sqrt{25}}=\dfrac{6}{10}=\dfrac{3}{5}\)

c.

Ta có: \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\ge1\)

\(\Rightarrow\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}}{8\sqrt{x}+8}-\dfrac{x+2\sqrt{x}+1}{8\sqrt{x}+8}-\dfrac{8\sqrt{x}+8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{6\sqrt{x}-x-9}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{-\left(\sqrt{x}-3\right)^2}{8\sqrt{x}+8}\ge0\)

Ta có: \(\left\{{}\begin{matrix}-\left(\sqrt{x}-3\right)^2\le0\\8\sqrt{x}+8\ge0\end{matrix}\right.\)

⇒ Không có \(x\) thỏa mãn

1 tháng 7 2023

\(a,A=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(b,x=14-6\sqrt{5}=\sqrt{5^2}-2.3.\sqrt{5}+3^2=\left(\sqrt{5}-3\right)^2\)

\(\Rightarrow A=\dfrac{\sqrt{\left(\sqrt{5}-3\right)^2}}{14-6\sqrt{5}+\sqrt{\left(\sqrt{5}-3\right)^2}+1}\)

\(=\dfrac{\left|\sqrt{5}-3\right|}{-6\sqrt{5}+15+\left|\sqrt{5}-3\right|}\)

\(=\dfrac{3-\sqrt{5}}{-6\sqrt{5}+15+3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}}{18-7\sqrt{5}}\)

\(c,A=1\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}=1\Leftrightarrow\sqrt{x}-x-\sqrt{x}-1=0\Leftrightarrow-x-1=0\Leftrightarrow x=-1\left(ktm\right)\)

Vậy khi A = 1 thì không có giá trị x thỏa mãn.

 

1 tháng 7 2023

Great

5 tháng 7 2017

- Đề đầy đủ rồi nhé các bạn. KO CÓ cộng thêm căn xy bên phải đâu tại tớ nhìn bị thiếu á -.-

5 tháng 7 2017

bạn viết lại cái đề bài đi đầy đủ ngắn gọn

1 tháng 9 2019

a) sửa đề bài luôn nha

A\(=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\frac{x-5\sqrt{x}-\left(x-25\right)}{x-25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\frac{x-5\sqrt{x}-x+25}{x-25}:\frac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\frac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\frac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}:\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}:\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}:\frac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{5}{\sqrt{x}+5}.\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x-9}\)

\(=\frac{5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{5}{\sqrt{x}+3}\)

1 tháng 9 2019

\(đk:x\ne25;x\ne9\)

thay \(x=29-12\sqrt{5}=>\sqrt{x}=\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}\right)^2-12\sqrt{5}+3^2}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)ta có A=\(\frac{5}{2\sqrt{5}-3+3}=\frac{5}{2\sqrt{5}}=\frac{\sqrt{5}}{2}\)

Vậy ...

14 tháng 4 2019

1, \(B=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\frac{x+\sqrt{x}}{x-4}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{x-4}{x+\sqrt{x}}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{x\left(\sqrt{x}+1\right)}\)

2, B=|B|\(\Rightarrow\frac{x+\sqrt{x}}{x-4}\ge0\)

* Với x-4>0\(\Rightarrow x>4\)

\(\Rightarrow x+\sqrt{x}\ge0\)

\(\Rightarrow x>0\) \(\Rightarrow x>4\)

*Với x-4<0=> x<4

\(\Rightarrow x+\sqrt{x}\le0\)

\(\Rightarrow-1\le x\le0\left(KTM\right)\)

Vậy x>4.

3,\(P.x=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+1\right)}\)\(\le10\sqrt{x}-29-\sqrt{x-25}\)

\(\Rightarrow\left(x-4\right)\left(\sqrt{x}+2\right)\le\left(\sqrt{x}+1\right)\left(10\sqrt{x}-29-\sqrt{x-25}\right)\)

Đến đây tự giải.

14 tháng 4 2019

Lúc đầu rút gọn B phải là \(\frac{\sqrt{x}}{\sqrt{x}-2}\)chứ c