K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

=1542658711

30 tháng 11 2017

\(\sqrt{20}+\sqrt{120}=\sqrt{2^2.5}+\sqrt{24.5}=2\sqrt{5}+2\sqrt{6}.\sqrt{5}\)

\(=2\sqrt{5}.\left(1+\sqrt{6}\right)\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

\(\begin{array}{l}a)2.\sqrt 6 .( - \sqrt 6 )\\ =  - 2.\sqrt 6 .\sqrt 6 \\ =  - 2.{(\sqrt 6 )^2}\\ =  - 2.6\\ =  - 12\\b)\sqrt {1,44}  - 2.{(\sqrt {0,6} )^2}\\ = 1,2 - 2.0,6\\ = 1,2 - 1,2\\ = 0\\c)0,1.{(\sqrt 7 )^2} + \sqrt {1,69} \\ = 0,1.7 + 1,3 \\= 0,7 + 1,3 \\= 2\\d)( - 0,1).{(\sqrt {120} )^2} - \frac{1}{4}.{(\sqrt {20} )^2} \\= ( - 0,1).120 - \frac{1}{4}.20\\ =  - 12 - 5\\ =  - (12 + 5)\\ =  - 17\end{array}\)

a: \(=-2\sqrt{6}\cdot\sqrt{6}=-2\cdot\sqrt{6\cdot6}=-2\cdot6=-12\)

b: \(=1.2-2\cdot0.6=1.2-1.2=0\)

c: \(=0.1\cdot7+1.3=0.7+1.3=2\)

d: \(=-0.1\cdot120-\dfrac{1}{4}\cdot20=-12-5=-17\)

16 tháng 9 2017
  • có A=\(\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}\)\(< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}\)\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)= 5 (tức là mỗi dấu căn cứ tuần tự như thế)
  • có B=\(\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}}\)\(< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{27}}}}\)=\(\sqrt[3]{24+\sqrt[3]{24+..+\sqrt[3]{24+3}}}\)= 3 (tức mỗi dấu căn cứ tuần tự như thế)           

\(\Rightarrow A+B< 3+5=8\)

mặt khác ta có A+B>\(\sqrt{20}+\sqrt[3]{24}=7.3566....>7\)\(\Rightarrow\left[A+b\right]=7\)

21 tháng 12 2021

<