Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{19+\sqrt{136}}\) -\(\sqrt{19-\sqrt{136}}\)
= \(\sqrt{19+2\sqrt{34}}\) - \(\sqrt{19-2\sqrt{34}}\)
= \(\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}\)
= \(\left|\sqrt{17}+\sqrt{2}\right|-\left|\sqrt{17}-\sqrt{2}\right|\)
= \(\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}\)
= \(2\sqrt{2}\)
Công thức viết khó đọc quá. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Đặt \(x=\sqrt{5+\sqrt{19+2\sqrt{5}}}-\sqrt{5-\sqrt{19+2\sqrt{5}}}>0\)
\(x^2=10-2\sqrt{\left(5+\sqrt{19+2\sqrt{5}}\right)\left(5-\sqrt{19+2\sqrt{5}}\right)}\)
\(x^2=10-2\sqrt{6-2\sqrt{5}}\)
\(x^2=10-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(x^2=10-2\sqrt{5}+2\)
\(x^2=12-2\sqrt{5}\)
\(\Rightarrow x=\sqrt{12-2\sqrt{5}}\)
\(=\left(\sqrt{3}+4\right)\sqrt{\left(4-\sqrt{3}\right)^2}+\left(\sqrt{3}-4\right)\sqrt{\left(4+\sqrt{3}\right)^2}=\left(\sqrt{3}+4\right)\left(4-\sqrt{3}\right)+\left(\sqrt{3}-4\right)\left(4+\sqrt{3}\right)\)
\(=16-3+3-16=0\)
Lời giải:
Đặt \(\sqrt{\sqrt{20}+\sqrt{19}}=a\)
Ta thấy:
\(\sqrt{\sqrt{20}+\sqrt{19}}.\sqrt{\sqrt{20}-\sqrt{19}}=\sqrt{(\sqrt{20}-\sqrt{19})(\sqrt{20}+\sqrt{19})}=\sqrt{20-19}=1\)
\(\Rightarrow \sqrt{\sqrt{20}-\sqrt{19}}=\frac{1}{\sqrt{\sqrt{20}+\sqrt{19}}}=\frac{1}{a}\)
PT trở thành:
\(a^x+\frac{1}{a^x}=2\)
\(\Leftrightarrow a^{2x}+1-2a^{x}=0\)
\(\Leftrightarrow (a^x-1)^2=0\Rightarrow a^x=1\)
Mà \(a\neq 1\) nên \(\Rightarrow x=0\)
a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)
Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=2\sqrt{3}-1+2\sqrt{3}+1=4\sqrt{3}\)
\(\sqrt{19-6\sqrt{2}}-\sqrt{19+6\sqrt{2}}=3\sqrt{2}-1-3\sqrt{2}-1=-2\)
\(\sqrt{19+\sqrt{136}}-\sqrt{19-\sqrt{136}}=\sqrt{17+2\sqrt{17.2}+2}-\sqrt{17-2\sqrt{17.2}+2}\)
\(=\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}=\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}\)
\(=2\sqrt{2}\)