Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A=1+2+3+4+5+6=\(\sqrt{1}\)+\(\sqrt{4}\)+\(\sqrt{9}\)+\(\sqrt{16}\)+\(\sqrt{25}\)+\(\sqrt{36}\)
Ta thấy \(\sqrt{1}\)<\(\sqrt{2}\)
\(\sqrt{4}\)<\(\sqrt{6}\)
.............
\(\sqrt{36}\)<\(\sqrt{42}\)
có gì sai thì sửa nhé
=>\(\sqrt{1}\)+\(\sqrt{4}\)+\(\sqrt{9}\)+\(\sqrt{16}\)+\(\sqrt{25}\)+\(\sqrt{36}\)<\(\sqrt{2}\)+\(\sqrt{6}\)+\(\sqrt{12}\)+\(\sqrt{20}\)+\(\sqrt{30}\)+\(\sqrt{42}\)
=>B<A hay A>B
a)\(\sqrt{4}+\sqrt{14}=5,741657387\)
\(\sqrt{18}\)=4,242640687
->vay: dien dau >
b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{18}=16,23872966\)
\(\sqrt{90}=9,486832981\)
->vay : điền dấu <
a)\(\sqrt{4}+\sqrt{14}\) và \(\sqrt{18}\)
ta có : \(\sqrt{18}=\sqrt{14}+\sqrt{4}\)
suy ra : \(\sqrt{4}+\sqrt{14}=\sqrt{18}\)
b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{12}\)với \(\sqrt{90}\)
ta có :\(\sqrt{90}=\sqrt{20}+\sqrt{20}+\sqrt{20}+\sqrt{30}\)
mà :\(\sqrt{20}>\sqrt{15};\sqrt{20}>\sqrt{16};\sqrt{20}>\sqrt{17};\sqrt{30}>\sqrt{12}\)
suy ra :\(\sqrt{90}\)lớn hơn
a, Ta có
\(7^2=49\)
\(\sqrt{42}^2=42\)
\(\Rightarrow\sqrt{42}< 7\)
b, Ta có
\(\sqrt{12}+\sqrt{35}\Leftrightarrow\sqrt{12^2}+\sqrt{35^2}=12+35=47\)
\(6+\sqrt{21}\Leftrightarrow6^2+\sqrt{21^2}=36+21=57\)
\(\Rightarrow\sqrt{12}+\sqrt{35}< 6+\sqrt{21}\)
\(c,\)Ta có
\(4+\sqrt{33}\Leftrightarrow16+\sqrt{33^2}=16+33=49\)
\(\sqrt{29}+\sqrt{14}\Leftrightarrow\sqrt{29^2}+\sqrt{14^2}=29+14=43\)
\(\sqrt{29}+\sqrt{14}< 4+\sqrt{33}\)
Câu d làm nốt nhé lười lắm. Không biết có sai k nếu sai thì chỉ cho mik vs nhé mn
a, Ta có: \(\sqrt{49}>\sqrt{42}\Leftrightarrow7>\sqrt{42}\)
b, Ta có: \(\sqrt{12}+\sqrt{35}< \sqrt{21}+\sqrt{36}=\sqrt{21}+6\)
c, Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)
d, Ta có: \(\sqrt{48+\sqrt{149}}< \sqrt{48+\sqrt{169}}=\sqrt{48+13}=\sqrt{61}< \sqrt{324}=18\)
Mk gợi ý vậy thôi bn tự trình bày nhé
STD well
a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)
\(\sqrt{1932932}+\sqrt[12]{14246}=1390,299248+2,218917107=1392,518165\)