Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(1.\sqrt{6-x}+1.\sqrt{x+2}\right)^2}\) \(\le\left(1^2+1^2\right)\left(6-x+x+2\right)=2.8=16\)
\(\frac{5\left(\sqrt{6}-1\right)\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}\)
\(=\frac{5\left(\sqrt{6}-1\right)^2}{5}-\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{1}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left(\sqrt{6}-1\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{2}-1\right)\)
\(=6-2\sqrt{6}+1-2+2\sqrt{6}-3+\sqrt{2}-1=\sqrt{2}\)
Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
1.\(DK:x\le\frac{1}{3}\)
2.\(DK:x\ge-1\)
3.\(DK:-1\le x< 1\)
Lời giải :
a) \(A=3\sqrt{x-1}+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(B=\frac{4}{\sqrt{x}+3}\le\frac{4}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
c) \(C=\frac{3\sqrt{x}+8}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-1}{\sqrt{x}+3}=3-\frac{1}{\sqrt{x}+3}\)
Có \(\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\)
\(\Leftrightarrow-\frac{1}{\sqrt{x}+3}\ge\frac{-1}{3}\)
\(\Leftrightarrow3-\frac{1}{\sqrt{x}+3}\ge3-\frac{1}{3}=\frac{8}{3}\)
\(\Leftrightarrow C\ge\frac{8}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
d) \(D=x-3\sqrt{x}+2\)
\(D=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)
\(D=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)
e) \(E=\frac{4}{x-2\sqrt{x}+3}=\frac{4}{\left(\sqrt{x}-1\right)^2+2}\le\frac{4}{2}=2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
a) Vì \(3\sqrt{x-1}\ge0\forall x\ge1\)
\(\Rightarrow3\sqrt{x-1}+7\ge7\forall x\ge1\)
Dấu "=" xảy ra <=>\(3\sqrt{x-1}=0\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Amin =7 tại x=1
Căn(19-6căn2) = Căn(18-2×3căn2+1)= Căn[(3căn2-1)2]=3căn2-1 (Vì 3căn2-1>0)
đây là câu hỏi thuộc loại gì vậy bạn phải trình bày đầy đủ thì mới trả lời được chứ