
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Cái câu đầu bn nhập sai rùi
Câu 2
\(x^5=2x^7\)
\(\frac{x^5}{x^7}=2\)
\(\frac{1}{x^2}=2\)
\(\left(\frac{1}{x}\right)^2=2\)
\(\frac{1}{x}=\sqrt{2}\)
Câu cuối
Ta thấy 2, 3, 5 đều là số nguyên tố nên
Ta phân tích 144 thành số nguyên tố \(2^4\cdot3^2\)
Thay vào Ta tính x=6; y=5
Vì số nào lũy thừa 0 lên cũng bằng 1 nên
Ta có thể viết \(144=2^4\cdot3^2\cdot5^0\)
Thay vào ta tính z=1
o phan dau tien ta co
x-5nhan căn bậc hai của x bằng 0
=>5 nhan can bac hai cua x bang x
=>ta co the thay x bang 5 nhan can bac hai cua x
thay vao ta duoc 5 nhan can bac hai cua x nhan voi5 nhan can bac hai cua x bang x^2
25*x=x^2=x*x
suy ra x=25
vay x=25
o phan tiep theo
x5=2x7
=>x.x.x.x.x.1=2.x.x.x.x.x.x.x
=>1=2.x.x
=>1/2=x*x
=>x= can bac hai cua 1/2
o phan cuoi cung
2x-2.3y-3.5z-1=144
=>2^x/4.3^y/9.5^z/5=144
=>2^x.3^y.5^z=144/4/9/5=0.8
ma o day ta thay 0.8 khong chua h chia het cho y x va z
vay ko co cap x y z nao thoa man

a. 2333 = (23)111= 8111
3222= (32)111= 9111
Thấy 8<9 nên 8111< 9111.
Vậy 2333 < 3222
b.\(\sqrt{8}\)+\(\sqrt{24}\)
8= 3+5= \(\sqrt{9}\)+\(\sqrt{25}\)
Thấy 9>8; 25>24 nên \(\sqrt{9}\)>\(\sqrt{8}\); \(\sqrt{25}\)>\(\sqrt{24}\)
Vậy \(\sqrt{8}\)+\(\sqrt{24}\)<8
c.Vì 4>3 và \(\sqrt{19}\)> \(\sqrt{15}\)nên 4+\(\sqrt{19}\)>\(\sqrt{15}\)+3
Vậy 4+\(\sqrt{19}\)> \(\sqrt{15}\)+3

Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)

\(\sqrt{81}=9\)
\(\sqrt{0,64}=0,8\)
\(\sqrt{\frac{49}{100}}=\frac{7}{10}\)
\(\sqrt{8100}=90\)
\(\sqrt{100=}10\)
\(\sqrt{0,01}=0,1\)
\(\sqrt{\frac{4}{25}}=\frac{2}{5}\)
\(\sqrt{\frac{0,09}{121}}=\frac{0,3}{11}\)
\(\sqrt{81}=9\);\(\sqrt{0,64}=0,8\);\(\sqrt{\frac{49}{100}}=\frac{7}{10}\);\(\sqrt{8100}=90\); \(\sqrt{100}=10\); \(\sqrt{0,01}=0,1\); \(\sqrt{\frac{4}{25}}=\frac{2}{5}\); \(\sqrt{\frac{0,09}{121}}=\frac{0,3}{11}=\frac{3}{110}\)

Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Xiếc áo thuật đây
, muốn xem thêm thì tick
\(\sqrt{17424}\)
=\(\sqrt{132^2}\)
=132
vậy \(\sqrt{17424}=132\)
k cho mh nha