\(\sqrt{1600^2-400^2}\)=?

\(\sqrt{1200^2-300^2}\)=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(\sqrt{1600^2-400^2}=1549,193338\)

25 tháng 10 2021

\(\sqrt{1600^2-400^2}=400\sqrt{15}\)

\(\sqrt{1200^2-300^2}=2^2\cdot3\cdot5^2\sqrt{15}\)

3 tháng 9 2019

a, \(\sqrt{25.16}=5.4=20\)

Chắc vậy á.

3 tháng 9 2019

ukm đúng rùi đóa

6 tháng 4 2017

Bằng 66

6 tháng 4 2017

\(2\sqrt{3}\). (\(3\sqrt{3}+8\sqrt{3}-5\))+ \(10\sqrt{3}\)

\(2\sqrt{3}.3\sqrt{3}+8\sqrt{3}+10\sqrt{3}-5\)

=\(18+2\sqrt{3}-5\)

=\(13+21\sqrt{3}\)

21 tháng 7 2018

\(A=2\sqrt{8}-3\sqrt{27}-\dfrac{1}{2}.\sqrt{128}+\sqrt{300}\)

\(=4\sqrt{2}-9\sqrt{3}-4\sqrt{2}+10\sqrt{3}\)

\(=\sqrt{3}\)

Vậy.....

8 tháng 10 2018

Ta có công thức tổng quát là \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Vậy \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{400\sqrt{399}+399\sqrt{400}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{399}}-\dfrac{1}{\sqrt{400}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{400}}=1-\dfrac{1}{20}=\dfrac{19}{20}\)

13 tháng 7 2017

a,

\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\\ =\sqrt{3-2\cdot1\cdot\sqrt{3}+1}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot1\cdot\sqrt{3}+1^2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}\\ =-1\)

b,

\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-3+\sqrt{2}\\ =\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)

c,

\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}\\ =\sqrt{5+2\cdot\sqrt{2\cdot5}+2}-\sqrt{5-2\cdot\sqrt{2\cdot5}+2}\\ =\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}\\ =2\sqrt{2}\)

d,

\(\left(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\right):\sqrt{15}\\ =\left(20\cdot\sqrt{20}\cdot\sqrt{15}-15\cdot\sqrt{45}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\left(20\cdot2\cdot\sqrt{5}\cdot\sqrt{15}-15\cdot3\cdot\sqrt{5}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\sqrt{15}\cdot\left(20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\right):\sqrt{15}\\ =20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\\ =40\sqrt{5}-45\sqrt{5}+5\sqrt{5}\\ =0\)

\(\sqrt{300}-\sqrt{27}+4\sqrt{3}\)

=\(10\sqrt{3}-3\sqrt{3}+4\sqrt{3}\)

=\(11\sqrt{3}\)

25 tháng 7 2019

\(\sqrt{300}-\sqrt{27}+4\sqrt{3}\)

\(=\sqrt{10^2.3}-\sqrt{3^2.3}+4\sqrt{3}\)

\(=10\sqrt{3}-3\sqrt{3}+4\sqrt{3}\)

\(=11\sqrt{3}\)

\(\frac{2+2\sqrt{5}}{3-\sqrt{5}}=\frac{\left(2+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\frac{6+2\sqrt{5}+6\sqrt{5}+10}{3^2-\sqrt{5}^2}=\frac{16+8\sqrt{5}}{4}=\frac{4\left(4+2\sqrt{5}\right)}{4}=4+2\sqrt{5}\)

\(=2\sqrt{4\sqrt{3}}-5\sqrt{20\sqrt{3}}-3\sqrt{500\sqrt{3}}\)

\(=\sqrt{\sqrt{3}}\left(2\sqrt{4}-5\sqrt{20}-3\sqrt{500}\right)\)

\(=\sqrt{\sqrt{3}}\cdot\left(4-40\sqrt{5}\right)\)

14 tháng 12 2016

a)   = \(\frac{\sqrt{2}.\sqrt{4+\sqrt{15}}}{\sqrt{2}}+\frac{\sqrt{2}.\sqrt{4-\sqrt{15}}}{\sqrt{2}}\)
      = \(\frac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\frac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}\)
      =  \(\frac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}\)
      = \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

      =   \(\frac{2\sqrt{5}}{\sqrt{2}}\)
      =   \(\sqrt{10}\)
b) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)

    = \(-\sqrt{3}\)
c) = \(\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}+\frac{1\left(\sqrt{2}+1\right)}{2-1}\)
    = \(\sqrt{2}-\sqrt{1}+\frac{1\left(\sqrt{2}+1\right)}{1}\)
    = \(\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{1}\)
    = \(2\sqrt{2}\)
Chúc bạn học tốt ^^

\(\sqrt{75}+\sqrt{48}+\frac{1}{2}.\sqrt{300}\)

\(=5\sqrt{3}+4\sqrt{3}+5\sqrt{3}\)

\(=\left(5+4+5\right)\sqrt{3}\)

\(=14\sqrt{3}\)

12 tháng 12 2021

Ta có:

\(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\text{ Vì thế, }A=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...-\frac{1}{\sqrt{401}}< 1.\)