Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu .... là vô hạn thì:
$M=\sqrt{15-2M}$
$\Rightarrow M^2=15-2M$
$\Leftrightarrow M^2+2M-15=0$
$\Leftrightarrow (M-3)(M+5)=0$
$\Leftrightarrow M=3$ (do $M>0$)
Gọi tam giác vuông cân đó là ABC
Ta có:\(\frac{AB+AC}{2}=\sqrt{2}\Leftrightarrow\frac{2AC}{2}=\sqrt{2}.\)
\(\Rightarrow AB=AC=\sqrt{2}\)
rút gọn
C=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(C=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
`C=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}`
`C=(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10})\sqrt{4-\sqrt{15}}`
`C=(\sqrt{10}+\sqrt{6})\sqrt{4-\sqrt{15}}`
`C=\sqrt{(\sqrt{10}+\sqrt{6})^2 .(4-\sqrt{15})}`
`C=\sqrt{(10+6+2\sqrt{60})(4-\sqrt{15})}`
`C=\sqrt{(16+4\sqrt{15})(4-\sqrt{15})}`
`C=\sqrt{64-16\sqrt{15}+16\sqrt{15}-60}`
`C=\sqrt{4}=2`
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)
\(=5-\sqrt{15}+\sqrt{15}-3=2\)
(Nếu đúng thì click cho mình 1 cái nhe!)
mình không hiểu chỗ : \(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\)
\(\sqrt{15}=x\cdot x=\sqrt{15}\)
Dương Hiệp não chó à