K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2021

\(\sqrt{11+2\sqrt{30}}\)   

\(=\sqrt{6+2\sqrt{30}+5}\)   

\(=\sqrt{\left(\sqrt{6}\right)^2+2\cdot\sqrt{6}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)   

\(=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)   

\(=|\sqrt{6}+\sqrt{5}|\)   

\(=\sqrt{6}+\sqrt{5}\)   

\(\sqrt{7-2\sqrt{10}}\)   

\(=\sqrt{5-2\sqrt{10}+2}\)   

\(=\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)   

\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)   

\(=|\sqrt{5}-\sqrt{2}|\)   

\(=\sqrt{5}-\sqrt{2}\)

\(\sqrt{11+2\sqrt{30}}=\sqrt{11+2\sqrt{5.6}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5.6}+\left(\sqrt{6}\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{6}\right)^2}=\left|\sqrt{5}+\sqrt{6}\right|=\sqrt{5}+\sqrt{6}\)

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

4 tháng 7 2021

a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)

b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)

\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)

c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)

18 tháng 7 2023

\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11+\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)

\(=\sqrt{7-2\sqrt{6}}-\dfrac{5\left(\sqrt{2}-1\right)}{\sqrt{5}\left(\sqrt{2}-1\right)}+\left|11+2\sqrt{30}\right|\sqrt{11-2\sqrt{30}}\)

\(=\sqrt{1^2-2\sqrt{6}\cdot1+\left(\sqrt{6}\right)^2}-\dfrac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{5}\cdot\sqrt{6}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(1-\sqrt{6}\right)^2}-\sqrt{5}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)

\(=\left|1-\sqrt{6}\right|-\sqrt{5}+\left(11+2\sqrt{30}\right)\left|\sqrt{6}-\sqrt{5}\right|\)

\(=-1+6-\sqrt{5}+\left(\sqrt{6}+\sqrt{5}\right)^2\left(\sqrt{6}-\sqrt{5}\right)\)

\(=\sqrt{6}-1-\sqrt{5}+\left[\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2\right]\left(\sqrt{6}+\sqrt{5}\right)\)

\(=\sqrt{6}-1-\sqrt{5}+\left(6-5\right)\left(\sqrt{6}+\sqrt{5}\right)\)

\(=\sqrt{6}-1-\sqrt{5}+\sqrt{6}+\sqrt{5}\)

\(=2\sqrt{6}-1\)

18 tháng 7 2023

\(=\sqrt{6+1-2\sqrt{6}}-\dfrac{\sqrt{5}\left(\sqrt{10}-\sqrt{5}\right)}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+\sqrt{120}\right)^2}\\ =\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}-\sqrt{5}+\sqrt{\left(11^2-120\right)\left(11+2\sqrt{30}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{1\left(6+5+2\sqrt{6\cdot5}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{6}+\sqrt{5}=2\sqrt{6}-\sqrt{1}\)

 

 

 

13 tháng 9 2018

\(\frac{9+4\sqrt{2}}{21}\)

5 tháng 12 2018

cho  P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\)  , Tìm GTLN của P  

21 tháng 6 2023

\(=\dfrac{1}{\sqrt{11-2\sqrt{5}.\sqrt{6}}}-\dfrac{3\left(7+2\sqrt{10}\right)}{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\\ =\dfrac{1}{\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}}-\dfrac{3\left(7+2\sqrt{10}\right)}{49-40}\\ =\dfrac{1}{\left|\sqrt{5}-\sqrt{6}\right|}-\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{\sqrt{6}+\sqrt{5}}{6-5}-\dfrac{7+2\sqrt{10}}{3}\\ =\sqrt{6}+\sqrt{5}+\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{3\sqrt{6}+3\sqrt{5}+7+2\sqrt{10}}{3}\)

\(=\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{7+2\sqrt{10}}{3}\)

\(=\sqrt{6}+\sqrt{5}+\dfrac{7}{3}+\dfrac{2}{3}\sqrt{10}\)

21 tháng 9 2017

10)=5.382332347

11)=1.918230732

a: Ta có: \(\sqrt{75}-2\sqrt{27}+\sqrt{48}\)

\(=5\sqrt{3}-2\cdot3\sqrt{3}+4\sqrt{3}\)

\(=3\sqrt{3}\)

c: Ta có: \(\sqrt{8+2\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)

\(=\sqrt{7}+1-\sqrt{7}+2\)

=3

20 tháng 7 2018

3.

Ta có: \(VT=\)\(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}\)

\(=8+8+\left(2\sqrt{10+2\sqrt{5}}-2\sqrt{10+2\sqrt{5}}\right)\)

\(=16\ne VP\)

⇒ Đề sai

19 tháng 7 2018

1. Ta có: \(\sqrt{4x}\)- 3\(\sqrt{x}\)+2\(\sqrt{15x}\)=18

⇌2\(\sqrt{x}\)-3\(\sqrt{x}\) +2\(\sqrt{15x}\)=18

\(-\sqrt{x}\) +2\(\sqrt{15x}\)-15 = 3

⇌-(\(\sqrt{x}\) -2\(\sqrt{15x}\)+15 )=3

⇌(\(\sqrt{x}\)-\(\sqrt{15}\))=-3 (vô lí)

Vậy không tìm được giá trị x thỏa mãn bài toán

2.Ta có: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)

= \(\dfrac{1}{\sqrt{6-2\sqrt{6.5}+5}}-\dfrac{3}{2-2\sqrt{2.5}+5}\)

=\(\dfrac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\dfrac{3}{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

=\(\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{3}{\sqrt{3}-\sqrt{2}}\)

hình như đề sai