Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\))\(x^2+5x+8=3\sqrt{x^3+5x^2+7x+6}\left(1\right)\\ĐK:x\ge-\dfrac{3}{2} \\ \left(1\right)\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\left(2\right)\)
Đặt \(b=\sqrt{2x+3};a=\sqrt{x^2+x+2}\)
\(\left(2\right)\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)\(\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1\pm\sqrt{5}}{2}\\x=\dfrac{7\pm\sqrt{89}}{2}\end{matrix}\right.\)
4)\(ĐK:x\ge-\dfrac{1}{3}\)
\(x^2-7x+2+2\sqrt{3x+1}=0\\ \Leftrightarrow x^2-7x+6+2\sqrt{3x+1}-4=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)+\dfrac{12\left(x-1\right)}{2\sqrt{3x+1}+4}=0\\ \Leftrightarrow\left(x-1\right)\left(x-6+\dfrac{12}{2\sqrt{3x+1}+4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x-6+\dfrac{12}{2\sqrt{3x+1}+4}=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x-5\right)+\dfrac{6}{\sqrt{3x+1}+2}-1=0\\ \Leftrightarrow\left(x-5\right)+\dfrac{4-\sqrt{3x+1}}{\sqrt{3x+1}+2}=0\\ \Leftrightarrow\left(x-5\right)-\dfrac{3\left(x-5\right)}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}=0\\ \Leftrightarrow\left(x-5\right)\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)=3\\ \Leftrightarrow3x+1+6\sqrt{3x+1}+8=3\\ \Leftrightarrow x+2\sqrt{3x+1}+2=0\\ \Leftrightarrow2\sqrt{3x+1}=-x-2\ge0\Leftrightarrow x\le-2\)
Vậy pt có 2 nghiệm là x=1 và x=5
đặt \(\sqrt{x^2+x+1}=t\left(t\ge\sqrt{\dfrac{3}{4}}\right)tacó\)
pt \(\Leftrightarrow\)3t=t\(^2\)+2
\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=2\left(tm\right)\end{matrix}\right.\)
Với t=1 ta có x\(^2\)+x+1=1 \(\Leftrightarrow\)x=0 hoặc x=-1
với t=2 ta có x\(^2\)+x+1 =2 \(\Leftrightarrow\)\(\dfrac{-1\mp\sqrt{5}}{2}\)=x
câu 2 tương tự đặt 2x^2+x-2=t(t\(\ge\dfrac{-17}{8}\))
ta có pt \(\Leftrightarrow\)t^2+5t-6=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=-6\left(loại\right)\end{matrix}\right.\)
với t=1 thì 2x^2+x-2=1 \(\Leftrightarrow\)t=1 hoặc -3/2
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-4x+4-6x+3-2\left(x-2\right)\sqrt{2x-1}>0\)
\(\Leftrightarrow\left(x-2\right)^2-3\left(2x-1\right)-2\left(x-2\right)\sqrt{2x-1}>0\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab>0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)>0\)
Do \(b\ge0\) nên BPT\(\Leftrightarrow\left[{}\begin{matrix}a>3b\\a< -b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\x-2< -\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\2-x>\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+4>9\left(2x-1\right)\left(với.x\ge2\right)\\x^2-4x+4>2x-1\left(với.x< 2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-22x+13>0\\x^2-6x+5>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>11+6\sqrt{3}\\\frac{1}{2}\le x< 1\end{matrix}\right.\)
ĐKXĐ: \(x\ge-3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a>0\\\sqrt{x+3}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2-x-5=2a^2-3b^2\\2x^2+x+1=2a^2-b^2\end{matrix}\right.\)
\(\Rightarrow\left(2a^2-3b^2\right)a+\left(2a^2-b^2\right)b\)
\(\Leftrightarrow2a^3+2a^2b-3ab^2-b^3=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a^2+4ab+b^2\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow x^2+x+2=x+3\Leftrightarrow x^2=1\)
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
1) Phương trình đã cho tương đương
\(\Leftrightarrow\left(x-2\right)\left(3\sqrt{x^2+1}-x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\frac{3}{4}\end{matrix}\right.\)
\(\sqrt{5x^2+10x+1}=-\frac{1}{5}\left(5x^2+10x+1\right)+\frac{36}{5}\)
Đặt \(\sqrt{5x^2+10x+1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow t=-\frac{1}{5}t^2+\frac{36}{5}\)
\(\Leftrightarrow-t^2+36-5t=0\)
\(\Rightarrow t=4\left(tm\right)\)
\(\Leftrightarrow5x^2+10x+1=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)