CHo nửa đường tròn (O) đường kính AB và C là điểm chính giữa cung AB. M là điểm bất k...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Gọi C là điểm chính giữa cung AB của nửa đường tròn tâm O đường kính AB, M là điểm bất kì trên cung BC. Kẻ CH vuông góc với AM tại H, I là giao của OH và BC, MI cắt nửa đường tròn tâm O tại D

a. CMR: CM // DB

b. Xác định vị trí của M để D,H,B thẳng hàng

c. E là giao của AD và MB. CM: EC//DM

a) Ta có: \(\widehat{CHA}=90^0\)(CH⊥AM)

nên H nằm trên đường tròn đường kính CA(Định lí)(1)

Ta có: \(\widehat{COA}=90^0\)(CO⊥AB)

nên O nằm trên đường tròn đường tròn CA(Định lí)(2)

Từ (1) và (2) ta suy ra: H và O nằm trên đường tròn đường kính CA

hay CHOA là tứ giác nội tiếp(đpcm)

28 tháng 2 2021

giúp mấy câu b và c đc ko

30 tháng 3 2019

GIUP TOI LAM VOI

30 tháng 3 2019

VE HINH NUA

17 tháng 4 2018

a)     Ta có ÐCMA = 450  góc nt chắn ¼ đg tròn

=> ∆CMH vuông cân tại H

=> CH=HM

Mà OC=OM

=> OH là trung trực của CM

∆CMH vuông cân tại H  => OH là trung trực cũng là phân giác

=> ÐNHM = 450  

=> ∆NMH vuông cân tại M

=> CHMN là hình vuông

b)    Vì OH là trung trực của CM => CI=IM

=> ÐICM = ÐIMC

Mà Ð CIM = ÐCBD (góc nt cùng chắn cung CD)

=> ÐICM = ÐCBD

=> MC//BD

c) Nếu H thuộc DB =>CHBM là hình bình hành AM đi qua trung điểm của CB=> M là giao điểm của trung tuyến xuất phát từ A của tam giác ACB với cung BC

d) Vì CHMN là hình vuông => ÐHNM = 45=> ÐONB = 450

=> N thuộc cung chứa góc 450 dựng trên đoạn OB

3 tháng 6 2021

Sao em hum thấy đc hình z :(

16 tháng 7 2020

Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:

O H E C B D M A

a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra  \(\Delta ABC\)cân tại A.

AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)

Ta có: AO vuông góc với BC tại H

Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )

Tam giác ABO vuông tại B có \(BH\perp AO\)

Theo hệ thức lượng trong tam giác vuông, ta có:

\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)

b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

AO2 = AB2 + BO2

Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

= AB + AC = 2AB = 2 . 4 = 8 ( cm )

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái