Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
\(B=\left\{-3;-2;-1;0;1;2;3;4\right\}\)
Để \(B\cap C=\varnothing\Leftrightarrow a\in D\)
Với \(D=\left\{x\in Z;x\le-4\right\}\)
Lời giải:
a)
\(A\cap B=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)
\(B\cap C=\left \{ x\in\mathbb{R}|4\leq x< 6 \right \}\)
\(A\cap C=\left \{ x\in\mathbb{R}|2\leq x\leq 5 \right \}\)
\(A\cup C=\left \{ x\in\mathbb{R}|1\leq x< 6 \right \}\)
\(A\setminus (B\cup C)=A\setminus \left \{ x\in\mathbb{R}|2\leq x\leq 7 \right \}=\left \{ x\in\mathbb{R}|1\leq x <2 \right \}\)
b)
Ta có: \(A\cap B\cap C=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)
Như vậy để \(D\subset A\cap B\cap C\) thì \(4\leq a,b\leq 5\) và \(a\leq b\)
bạn giải dùm mình 2 câu các tập hợp số nữa đi. cám ơn trc nha. mai mình nộp rồi. bạn tranh thủ dùm
A=(-2;2)
B=[-3;2)
A giao B=(-2;2)
A\B=\(\varnothing\)
B\A=[-3;-2]
\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
3.
\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)
\(\Leftrightarrow-3< x< 7\)
\(\Rightarrow C=\left(-3;7\right)\)
\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)
\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)
\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)
4.
Hình như cái đề chẳng liên quan gì đến đáp án hết :)
1.
\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)
2.
\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)
Rất tiếc tập này không thể liệt kê được (có vô số phần tử)
Lời giải:
Theo đề thì: \(B\subset A\) nên \(A\cap B = B [-2;1)\)