Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 99^20=99^10 . 99^10
9999^10=99^10 . 101^10
mà 99^10=99^10;101^10>99^10=>99^20<9999^10
ta có 2017^30=2017^15.2017^15
20172017^15=2017^15 . 1001^15
vì 2017^15=2017^15;2017^15<1001^15=>2017^30<20172017^15
a, 2225 = 215.15= ( 215)15 = 3276815
3150 = 310.15 = ( 310)15 = 5904915
Dễ thấy 32768 < 59049 nên 2225 < 3150
\(VT=2^{30}+3^{30}+4^{30}>3.\sqrt[3]{2^{30}.3^{30}.4^{30}}=3.\left(2.3.4\right)^{10}=3.24^{10}=VP\)
a, 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975 nên 2225 < 3150
b, 334 > 330 = (33)10 = 2710
521 > 520 = (52)10 = 2510
Vì 2710 > 2510 => 330 > 520 => 334 > 521
c, 321 > 320 = (32)10 = 910
231 > 230 = (23)10 = 810
Vì 910 > 810 => 321 > 231
d, 291 > 290 = (25)18 = 3218
535 < 536 = (52)18 = 2518
Vì 3218 > 2518 => 291 > 535
e, 9920 = (992)10 = 980110 < 999910
f, 128.912 = 38.48.324 = 332.212
1816 = 216.916 = 216.332
Vì 332 . 212 < 216.332 => 128.912 < 1816
g, 7520 = 2520.320 = 540.320
4510.530 = 510.910.530 = 540.320
Vậy 7520 = 4510.530
\(A=1+3+3^2+3^3+...+3^{2016}\)
\(A=1+3\left(1+3^2+...+3^{2015}\right)\)
\(A=1+3\left(A-3^{2016}\right)\)
\(A=1+3A-3^{2017}\)
\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)
\(A< B\)
1, Ta có:\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)\(\Rightarrow\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}=\frac{2a+15b+5a-7b}{2c+15d+5c-7d}=\frac{7a-8b}{7c-8d}\)
\(\Rightarrow\frac{7a-8b}{7c-8d}=\frac{7a}{7c}=\frac{8b}{8d}\)\(\Rightarrow\frac{7a}{7c}=\frac{8b}{8d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(đpcm)
2, Ta có: \(4^{30}=2^{30}.2^{30}=2^{30}.\left(2^2\right)^{15}=2^{30}.4^{15}\)
Lại có: \(3.24^{10}=3.3^{10}.8^{10}=3^{11}.\left(2^3\right)^{10}=3^{11}.2^{30}\)
Vì \(4^{15}>3^{11}\)\(\Rightarrow2^{30}.4^{15}>2^{30}.3^{11}\)\(\Rightarrow4^{30}>3.24^{10}\)\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Sửa lại câu 1.
Với đk: \(5a\ne7b;5c\ne7d\); \(b;d\ne0\).
\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)
TH1: \(2c+15d=0\)=> \(2a+15b=0\)=> \(\frac{a}{b}=\frac{c}{d}\)
TH2: \(2c+15d\ne0\)
=> \(\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}\)
=> \(\frac{5\left(2a+15b\right)}{5\left(2c+15d\right)}=\frac{2\left(5a-7b\right)}{2\left(5c-7d\right)}\)
=> \(\frac{10a+75b}{10c+75d}=\frac{10a-14b}{10c-14d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{10a+75b}{10c+75d}=\frac{10a-14b}{10c-14d}=\frac{10a+75b-10a+14b}{10c+75d-10c+14d}=\frac{89b}{89d}=\frac{b}{d}\)
=> \(\frac{10a+75b}{10c+75d}=\frac{b}{d}=\frac{75b}{75d}=\frac{10a+75b-75b}{10c+75d-75d}=\frac{10a}{10c}=\frac{a}{c}\)
=> \(\frac{b}{d}=\frac{a}{c}\)
=> \(\frac{a}{b}=\frac{c}{d}\).
Ta có :
430 = 230 . 415 > 230 . 411 > 230 . 311 = 3 . 2410
\(\Rightarrow\)430 > 3 . 2410
\(\Rightarrow\)230 + 330 + 430 > 3 . 2410
Vậy 230 + 330 + 430 > 3 . 2410
1) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
2) \(3^{21}=3^{20}\cdot3=9^{10}\cdot3\)
\(2^{31}=2^{30}\cdot2=8^{10}\cdot2\)
mà \(9^{10}\cdot3>8^{10}\cdot2\)=> tự viết tiếp
3) đợi chút
430 = (43)10 = 6410 > 4810 = ( 2 . 24 )10 = ( 210 ) . ( 2410 ) > 3 . 2410
=> 230 + 330 + 430 > 3 . 2410
.