K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$2020\equiv 1\pmod 3\Rightarrow 2020x^3\equiv x^3\pmod 3$

$2021\equiv -1\pmod 3\Rightarrow 2021x\equiv -x\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv x^3-x\pmod 3$
Mà $x^3-x=x(x^2-1)=x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x^3-x\equiv 0\pmod 3$

$\Rightarrow 2020x^3+2021x\equiv 0\pmod 3(*)$

Mặt khác:
$y^{2022}=(y^{1011})^2$ là scp nên $y^{2022}\equiv 0,1\pmod 3$

$2023\equiv 1\pmod 3$

$\Rightarrow y^{2022}+2023\equiv 1,2\pmod 3(**)$

Từ $(*); (**)\Rightarrow 2020x^3+2021x\neq y^{2022}+2023$ với mọi $x,y$ nguyên.

Do đó không tồn tại $x,y$ thỏa đề.

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$2020\equiv 1\pmod 3\Rightarrow 2020x^3\equiv x^3\pmod 3$

$2021\equiv -1\pmod 3\Rightarrow 2021x\equiv -x\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv x^3-x\pmod 3$
Mà $x^3-x=x(x^2-1)=x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x^3-x\equiv 0\pmod 3$

$\Rightarrow 2020x^3+2021x\equiv 0\pmod 3(*)$

Mặt khác:
$y^{2022}=(y^{1011})^2$ là scp nên $y^{2022}\equiv 0,1\pmod 3$

$2023\equiv 1\pmod 3$

$\Rightarrow y^{2022}+2023\equiv 1,2\pmod 3(**)$

Từ $(*); (**)\Rightarrow 2020x^3+2021x\neq y^{2022}+2023$ với mọi $x,y$ nguyên.

Do đó không tồn tại $x,y$ thỏa đề.

31 tháng 7 2023

- Với \(0< x;y< 1\)

\(x^2>x^{2003}\left(1\right)\)

\(y^2>y^{2003}\left(2\right)\)

\(z^2>z^{2003}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow M=x^2+y^2+z^2>x^{2003}+y^{2003}+z^{2003}=3\)

\(\Rightarrow\) Không có giá trị max của M.

- Với \(x;y\ge1\)

\(x^2\le x^{2003}\left(1\right)\)

\(y^2\le y^{2003}\left(2\right)\)

\(z^2\le z^{2003}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow x^2+y^2+z^2\le x^{2003}+y^{2003}+z^{2003}=3\)

\(\Rightarrow Max\left(M\right)=3\left(x=y=z=1\right)\)

15 tháng 4 2023

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+3y^3=2023\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+3y^3=2023\)

\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+3y^3=2023\)  (*)

Đặt \(x^2+8x+11=t\left(t\inℤ;t\ge-5\right)\), pt (*) trở thành \(\left(t-4\right)\left(t+4\right)+3y^3=2023\) 

\(\Leftrightarrow t^2-16+3y^3=2023\)

\(\Leftrightarrow t^2+3y^3=2039\)        (1)

Xét pt (1), dễ thấy \(t^2\equiv0\left(mod3\right)\) hoặc \(t^2\equiv1\left(mod3\right)\), lại có \(3y^3\equiv0\left(mod3\right)\) nên \(VT\equiv0\left(mod3\right)\) hoặc \(VT\equiv1\left(mod3\right)\). Nhưng \(VP=2039\equiv2\left(mod3\right)\), điều này có nghĩa là (1) vô nghiệm.

Vậy phương trình đã cho không thể có nghiệm nguyên.

 

 

16 tháng 4 2023

⇔[(�+1)(�+7)][(�+3)(�+5)]+3�3=2023

⇔(�2+8�+7)(�2+8�+15)+3�3=2023  (*)

Đặt �2+8�+11=�(�∈Z;�≥−5), pt (*) trở thành (�−4)(�+4)+3�3=2023 

⇔�2−16+3�3=2023

⇔�2+3�3=2039        (1)

Xét pt (1), dễ thấy �2≡0(���3) hoặc �2≡1(���3), lại có 3�3≡0(���3) nên ��≡0(���3) hoặc ��≡1(���3). Nhưng ��=2039≡2(���3), điều này có nghĩa là (1) vô nghiệm.

Vậy phương trình đã cho không thể có nghiệm nguyên

16 tháng 12 2021

Để hai đường thẳng song song thì m+1=2021

hay m=2020

23 tháng 8 2023

Để tính (x+y)2023, ta sẽ sử dụng công thức nhân đa thức. Trước tiên, ta mở đuôi công thức:(x+y)2023 = (x+y)(x+y)(x+y)...(x+y)Từ phép nhân đầu tiên, ta có:(x+y)(x+y) = x^2 + 2xy + y^2Tiếp tục nhân với (x+y), ta có:(x^2 + 2xy + y^2)(x+y) = x^3 + 3x^2y + 3xy^2 + y^3Lặp lại quá trình này 2020 lần nữa, ta có:(x^3 + 3x^2y + 3xy^2 + y^3)(x+y) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4Tiếp tục nhân với (x+y), ta có:(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4)(x+y) = x^5 + 5x^4y + 10x^3

26 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-6x+m+4=0\)

\(\Delta'=9-\left(m+4\right)=-m+5\)

Để (P) cắt (d) tại 2 điểm pb khi \(5-m>0\Leftrightarrow m< 5\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=6\\x_1x_2=m+4\end{cases}}\)

Thay vào ta được \(6.2020-2021.\left(m+4\right)=2014\)

\(\Leftrightarrow4036-2021m=2014\Leftrightarrow m=\frac{2022}{2021}\)(tm) 

NV
26 tháng 3 2022

Pt hoành độ giao điểm: \(x^2-6x+m+4=0\) (1)

(P) cắt (d) tại 2 điểm pb khi: \(\Delta'=9-\left(m+4\right)>0\Rightarrow m< 5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+4\end{matrix}\right.\)

\(2020\left(x_1+x_2\right)-2021x_1x_2=2014\)

\(\Leftrightarrow2020.6-2021\left(m+4\right)=2014\)

\(\Rightarrow m=\dfrac{2022}{2021}\)

\(\Leftrightarrow\left(\sqrt{x+2022}-\sqrt{y+2022}\right)+\left(x^3-y^3\right)=0\)

=>\(\dfrac{x-y}{\sqrt{x+2022}+\sqrt{y+2022}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

=>x-y=0

=>x=y

P=2x^2-5x^2+x^2+12x+2023

=-2x^2+12x+2023

=-2(x^2-6x-2023/2)

=-2(x^2-6x+9-2041/2)

=-2(x-3)^2+2041<=2041

Dấu = xảy ra khi x=3

26 tháng 4 2023

\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)

\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)

\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Ta có:

+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)

+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)

\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)