Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 11:
Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)
Vậy: \(a+7\inƯ\left(101\right)\)
\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)
\(a+7\in\left\{101;1;-101;-1\right\}\)
\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)
Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)
Bài 12:
Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)
t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)
Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
\(y=\dfrac{2x-3}{x-2}=\dfrac{2\left(x-2\right)+1}{x-2}=2+\dfrac{1}{x-2}\in Z\\ \Leftrightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{1;3\right\}\)
Ta có: \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
\(\Rightarrow\frac{2}{2x}+\frac{xy}{2x}=\frac{5}{8}\)
\(\Rightarrow\frac{2+xy}{2x}=\frac{5}{8}\)
\(\Rightarrow8.\left(2+xy\right)=5.2x\)
\(\Rightarrow16+8xy=10x\)
\(\Rightarrow10x-8xy=16\)
\(\Rightarrow2x.5-2x.4y=16\)
\(\Rightarrow2x.\left(5-4y\right)=16\)
Với \(x;y\inℕ^∗\Rightarrow\hept{\begin{cases}2x\inℕ^∗\\5-4y\inℕ^∗\end{cases}}\)
mà 16 = 1.16 = 2.8 = 4.4
Lập bảng xét 6 trường hợp ta có :
\(2x\) | \(4\) | \(2\) | \(8\) | \(16\) | \(1\) |
\(x\) | \(2\) | \(1\) | \(4\) | \(8\) | \(\frac{1}{2}\) |
\(5-4y\) | \(4\) | \(8\) | \(2\) | \(1\) | \(16\) |
\(y\) | \(\frac{1}{4}\) | \(-\frac{3}{4}\) | \(\frac{3}{4}\) | \(1\) | \(-\frac{11}{4}\) |
Vậy x = 8 ; y = 1
\(B=\dfrac{x-10}{x-5}\in Z\left(x\ne5\right)\)
\(\Rightarrow x-10⋮x-5\)
\(\Rightarrow x-10-\left(x-5\right)⋮x-5\)
\(\Rightarrow x-10-x+5⋮x-5\)
\(\Rightarrow-5⋮x-5\)
\(\Rightarrow x-5\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{4;6;0;10\right\}\)
ĐKXĐ: \(x\ne3\)
Với \(x\ne3\), ta có:
\(A=\dfrac{2x-5}{x-3}\) \(=\dfrac{2x-6+1}{x-3}\) \(=2+\dfrac{1}{x-3}\)
Để A nguyên thì \(\dfrac{1}{x-3}\) nguyên
\(\Leftrightarrow1⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Leftrightarrow x=\left\{4;2\right\}\)
Vậy với x ={4; 2} thì A là một số nguyên.
ĐKXĐ: \(x\ne3\)
Để A là một số nguyên thì \(2x-5⋮x-3\)
\(\Leftrightarrow2x-6+1⋮x-3\)
mà \(2x-6⋮x-3\)
nên \(1⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(1\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)(thỏa mãn ĐKXĐ)
Vậy: Để A nguyên thì \(x\in\left\{4;2\right\}\)
Ta có:
\(T=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=\frac{3.\left(x-5\right)+7}{x-5}=\frac{3.\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để T nguyên thì \(\frac{7}{x-5}\) nguyên
\(\Rightarrow x-5\inƯ\left(7\right)\)
\(\Rightarrow x-5\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{6;4;12;-2\right\}\)
Vậy \(x\in\left\{6;4;12;-2\right\}\) thì T nguyên
\(\dfrac{-101}{x-5}\) là số nguyên thì \(x-5\)là ước của 101, \(x\ne5\)
Suy ra \(\left[{}\begin{matrix}x-5=1\\x-5=-1\\x-5=101\\x-5=-101\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=4\\x=106\\x=-96\end{matrix}\right.\)
So với đầu kiện của bài toán ta có 4 giá trị x thõa mãn