Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25%.x+1/2.x-4/5=2,6
=> 1/4.x+1/2.x-4/5=13/5
=> x.(1/4+1/2) =13/5+4/5
=> x.3/4 =17/5
=> x =17/5:3/4
=> x =68/15
Mik nhé các bạn
a: =>(x-2)^3*[(x-2)^2-1]=0
=>(x-2)(x-3)(x-1)=0
=>\(x\in\left\{1;2;3\right\}\)
b: =>(x-3)^2*(x-3-1)=0
=>(x-3)(x-4)=0
=>x=3 hoặc x=4
c: =>\(11\cdot\dfrac{6^x}{6}+2\cdot6^x\cdot6=6^{11}\left(11+2\cdot6^2\right)\)
=>6^x(11/6+12)=6^12(11/6+12)
=>x=12
b)11.6x-1+2.6x+1=11.611+2.613
11.6x-1+2.6x+1 = 11. 612-1+ 2. 612+1
=> x= 12
c) 24-x / 165 = 326
24-x / 220= 230
24-x = 250
=> 4-x = 50
x= -46
c) \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(2^{4-x}:2^{20}=\left(2^5\right)^6\)
\(2^{4-x}=2^{30}.2^{20}\)
\(2^{4-x}=2^{50}\)
=> \(4-x=50\)
=> \(x=4-50=-46\)
vậy x = -46
A)3.5n.52+4.5n:53=19.9765625
5n(3.52+4:53)=185546875
5n.\(\frac{12}{5}\)=185546875
1. a, 2(x - 3) + 1 = -25
<=> 2(x - 3) = -26
<=> x - 3 = -13
<=> x = -10
b, 13x + 14 = 2x - 52
<=> 13x - 2x = -52 - 14
<=> 11x = -66
<=> x = -6
@Lê Thị Hồng Ngát
\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)
\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)
\(\Leftrightarrow x=-1+1=-2\)
Vậy x = -2
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1992\)