Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2
Nếu a,b ko cùng tính chẵn lẻ thì
ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2
Nếu a,b lẻ thì (a+b) chia hết cho 2
=>ab(a+b) chia hết cho 2
b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)
\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)
Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)
\(\Leftrightarrow\left(x+4y\right)⋮7\)
Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)
Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm)
2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)
\(=n\left(n-1\right)\left(n+1\right)\)
Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)
Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).
kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...0...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=0\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{2006.2007}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2006}-\dfrac{1}{2007}\)
\(=\dfrac{1}{4}-\dfrac{1}{2007}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4}\left(đpcm\right)\)
Vậy...
Bạn có chép sai đề bài k vậy ?
bn chép sai đề rồi