
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Olm chào em. Đây là toán nâng cao chuyên đề đếm số cách sắp xếp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Chữ số lớn nhất là chữ số 9
Các số thỏa mãn đề bài có dạng: \(\overline{ab9ba}\)
Trong đó có 9 cách chọn a
Có 10 cách chọn b
Số các số thỏa mãn đề bài là:
9 x 10 = 90 (số)
Vậy tập hợp A có 90 phần tử

1225=5^2.7^2.
nên ta có:(2+1).(2+1)=9 ước tự nhiên.Vậy số 1225 có 9 ước tụ nhiên


a)
Ta có: abba=1000*a+100*b+10*b+a*1
=1001*a+110*b
=110*a+891*a+110*b
=(a+b)*110 +891*a
Ta thấy:110 chia hết cho 11 nên (a+b)*110 chia hết cho 11,mặt khác 891 chia hết cho 11 nên a*891 chia hết cho 11
=>(a+b)*110 +891*a chia hết cho 11
Hay abba chia hết cho 11
b)aaabbb= 111000*a +b*111 ma 111000chia hết 37 và 111 chia het 37 suy ra 37 la uoc cua aabbb
c)Ta có ababab = 10101 x ab mà 10101 chia hết cho 1443 (10101=1443x70) nên 1443 là ước của số có dạng ababab.
126=2x32x7
Số ước của 126 là: (1+1)x(2+1)x(1+1)=12 ước.