\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=45...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

ĐK \(n\ge0\)

Ta có \(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)

\(\Leftrightarrow3^n\left(6.9.3^n+3\right)-2.3^n\left(27.3^n-1\right)=405\)

\(\Leftrightarrow54.3^{2n}+3.3^n-54.3^{2n}+2.3^n=405\Leftrightarrow5.3^n=405\)

\(\Leftrightarrow3^n=81=3^4\Leftrightarrow n=4\left(tm\right)\)

Vậy \(n=4\)

6 tháng 6 2016

\(3.3^{n-1}.\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)

\(\Rightarrow3.3^{n-1}.6.3^{n+2}+3.3.3^{n-1}-2.3^n.3^{n+3}+1.2.3^n=405\)

\(\Rightarrow3^{1+n-1}.6.3^n.3^2+3^{1+1+n-1}-2.3^n.3^n.3^3+3^n.2=405\)

\(\Rightarrow3^n.\left(6.3^2\right).3^n+3^{n+1}-\left(2.3^3\right).3^{n+n}+3^n.2=405\)

\(\Rightarrow\left(3^n.3^n\right).54+3^{n+1}-54.3^{2n}+3^n.2=405\)

\(\Rightarrow3^{2n}.54+3^{n+1}-3^{2n}.54+3^n.2=405\Rightarrow3^{n+1}+3^n.2=405\)

\(\Rightarrow3^n.3+3^n.2=405\Rightarrow3^n.5=405\Rightarrow3^n=81=3^4\Rightarrow n=4\)

19 tháng 8 2016

\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)

\(\Leftrightarrow18.3^{2n+1}+3.3^n-2.3^{2n+3}+2.3^n=405\)

\(\Leftrightarrow54.3^{2n}+5.3^n-2.3^3.3^{2n}=405\)

\(\Leftrightarrow3^n=81\)

\(\Leftrightarrow n=4\)

26 tháng 6 2016

\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)

\(\Leftrightarrow18.3^{2n+1}+3.3^n-2.3^{2n+3}+2.3^n=405\)

\(\Leftrightarrow54.3^{2n}+5.3^n-2.3^3.3^{2n}=405\)

\(\Leftrightarrow3^n=81\)

\(\Leftrightarrow n=4\)

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

5 tháng 5 2017

a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)

\(\Leftrightarrow15-12n+27+2n>0\)

\(\Leftrightarrow42-10n>0\)

\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)

Vậy \(S=\left\{n|n< 4,2\right\}\)

b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)

\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)

\(\Leftrightarrow4n+13\le40\)

\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)

Vậy \(S=\left\{n|n\le6,75\right\}\)

9 tháng 4 2017

Bài 2: 

A = (a+b)(1/a+1/b)

Có: \(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

=> ĐPCM

11 tháng 4 2018

1.b)

Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19 
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)