Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)
\(=11^n.\left(133-12\right)+144^n.12\)
\(=11^n.\left(133-12\right)+\left(133+11\right)^n.12\)
Ta có : \(\left(133+11\right)^n=133^n+133^{n-1}.11^1+...+133.11^{n-1}+11^n\)
\(133^n+133^{n-1}.11^1+...+133.11^{n-1}⋮133\)( vì mỗi số hạng đều chứa thừa số 133)
Ta ký hiệu số chia hết cho 133 là \(B\left(133\right)\)
Do đó \(\left(133+11\right)^n=B\left(133\right)+11^n\)
\(\Rightarrow A=11^n.133-11^n.12+\left[B\left(133\right)+11^n\right].12\)
\(=B\left(133\right)-11^n.12+B\left(133\right)+11^n.12\)
\(=B\left(133\right)\)
Vậy ...
11^n+2 + 12^2n+1
= 121*11^n + 144^n*12
= (133-12)11^n + 144^n*12
= 133*11^n + 12*(144-11)
= 133*11^n + 12*133
= 133(11^n + 12) chia hết cho 133.
\(11^{n+2}+12^{2n+1}=11.2.11^n+12.1.12^{2n}\)
\(=121.11^n+12.144^n\)
\(\left(133-12\right).11^n+12.144^n\)
\(133.11^n+\left(144^n-11^n\right).12=133.11^n+133^n.12\)
133.11^n chia hết cho 133
133^n.12 chia hết cho 133
=> 11^n+2 + 12 ^2n+1 chia hết cho 133
a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)
\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)
b) \(2^{n+1}+4.2^n=3.2^7\)
\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)
c) \(3^{n+2}-3^{n+1}=486\)
\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)
\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)
d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)
\(=11^n\left(133-12\right)+144^n.12\)
\(=133.11^n-12.12^n+144^n.12\)
\(=133.11^n-12\left(144^n-11^n\right)\)
Vì \(133.11^n⋮133;144^n-11^n⋮\left(144-11\right)\Rightarrow144^n-11^n⋮133\)
\(\Rightarrow133.11^n-12\left(144^n-11^n\right)⋮133\) hay \(A⋮133\)