Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào đây nhé bạn: Câu hỏi của Công chúa Fine - Toán lớp 7 | Học trực tuyến
Do 3x+1 \(⋮\)y và 3y+1\(⋮\) x
nên (3x+1)(3y+1) \(⋮\)xy
=>9xy+3x+3y+1 \(⋮\)xy
mà 9xy \(⋮\)xy
=>3x+3y+1 \(⋮\)xy
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x
Do vai trò của x,y như nhau nên giả sử
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7
=>x = 2,3,4,5,6
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x
Xl bn nha
Chỗ
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}-\frac{x+11}{15}-\frac{x+11}{16}=0\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Mà \(\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)\ne0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Ta có hình vẽ sau:
A B C M D N E
a) Xét ΔABM và ΔCDM có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> ΔABM = ΔCDM (c.g.c)(đpcm)
b) Vì ΔABM = ΔCDM (ý a)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CD (đpcm)
c) +)Vì ΔAB // CD (ý b)
=> \(\widehat{NBM}=\widehat{EDM}\) (so le trong)
Xét ΔMNB và ΔMED có:
\(\widehat{EMD}=\widehat{NMB}\) (đối đỉnh)
MB = MD (gt)
\(\widehat{NBM}=\widehat{EDM}\) (cm trên)
=> ΔMNB = ΔMED (g.c.g)
=> NB = ED(2 cạnh tương ứng) (1)
+) CM tương tự ta có:
ΔMEA = ΔMNC(g.c.g)
=> EA = NC (2 cạnh tương ứng) (2)
Từ (1) và (2)
=> EA = ED => E là trung điểm của AD (đpcm)
á, sao đã tl rồi thế này hả
Nguyễn Thị Thu An,
Trần Nghiên Hy
đặt biểu thức trên là A
sử dụng tính chất phép nhân phân phối phép trừ suy ra A=1.2.3.4.5.6.7.(8.9-8-82)
=1.2.3.4.5.6.7.(72-8-64)
=1.2.3.4.5.6.7.0
=0
Ta có : \(2^{n-1}⋮259\)
=> \(2^{n-1}\) thuộc B (259) = {0;259;...}
Mà n nhỏ nhất => n = 0
Ta có 2n - 1 chia hết cho 259
2n - 1 là B(259) = {0; 259; .....}
Mà n nhỏ nhất => 2n - 1 = 0
2n = 1 => n = 0
Vậy n nhỏ nhất là 0