K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Công thức tính tổng từ 1 đến n theo khoảng cách 1 là: \(\frac{n\left(n+1\right)}{2}\)

Ta có: \(\frac{n\left(n+1\right)}{2}\)> 100

<=> \(n\left(n+1\right)\)> 200

Hai số tự nhiên liên tiếp có tích nhỏ nhất lớn hơn 200 là 14.15

Vậy n = 14. (đã thử trên Violympic vòng 15)

21 tháng 3 2021

Ta có: $1+2+3+...+n=\dfrac{n(n+1)}{2}$

Nên $1+2+3+...+n>0⇔\dfrac{n(n+1)}{2}>100$

$⇔n(n+1)>200$

với $n=1;2;3;4;5;6;7;8;9;10;11;12;13$ khi thay vào ta thấy $n(n+1)<200$

nên loại 

với $n=14⇒n(n+1)=14.15=210>200$ chọn

Vậy số tự nhiên n nhỏ nhất là 14 thỏa mãn đề

3 tháng 1 2017

Xem lại cái đề thử đúng chưa nhé

3 tháng 1 2017

\(U\left(n\right)=n^3-n^2-7n+1\)

U(0)=1;U(2)==-9;U(3)=-1;U(4)=21

Đặt n=(p+4) {xét luôn dương đỡ loạn)

\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương 

\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)

\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)

với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)

với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố

với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố

với p=3k+1=>p(p+1)^2 chia 3 dư 1

xét tiếp:

với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại

=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại

"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:

Tạm chấp nhận p=3; n=7  (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)