K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

TA CÓ: N+8 CHIA HẾT N+3

(N+3)+5 CHIA HẾT N+3

5 CHIA HẾT N+3

N+3 THUỘC ƯỚC CỦA 5 THUỘC 1;5

NẾU N+3=1 SUY RA N=-2

NẾU N+3= 5 SUY RA N=2

MÀ N LÀ SỐ TỰ NHIÊN

N=2

25 tháng 2 2016

giup t voi di ma

17 tháng 5 2016

Ta thấy \(n^2+n+1=n\left(n+1\right)+1\)

\(n\left(n+1\right)\) chỉ có tận cùng là 0 , 2, 4 nên \(n^2+n+1\) chỉ có tận  cùng là 1, 3, 7. 

Như vậy \(n^2+n+1\) không chia hết cho 10, từ đó suy ra nó không chia hết cho 2010. 

Vậy không tìm được số tự nhiên n sao cho \(n^2+n+1\) chia hết 2010.

Chúc em học tốt ^^

a: \(5x^ny^3:4x^2y^2=\dfrac{5}{4}x^{n-2}y\)

Để đây là phép chia hết thì n-2>0

hay n>2

b: \(x^ny^{n+1}:x^2y^5=x^{n-2}y^{n-4}\)

Để đây là phép chia hết thì \(\left\{{}\begin{matrix}n-2>0\\n-4>0\end{matrix}\right.\Leftrightarrow n>4\)

28 tháng 2 2016

gọi chữ số hàng đơn vị là x

số ban đầu là 10(x+5)+x

số sau khi đảo vị trí là 10x+(x+5)

theo bài ra ta có phương trình

10(x+5)+x=3/8[10x+(x+5)]

bạn tự giải phương trình trên nha

kết quả là x=2

khi đó số đó là 72

thử lại nha:72 nhân 3/8 bằng 27

xong rồi đó

3 tháng 8 2016

\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)

\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6

=>5.(n-1).n.(n+1) chia hết cho (5.6)=30  (1)

Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30  (2)

Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30

=>n5-n chia hết cho 30 (đpcm)

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp

=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)

Từ (3);(4);lại có (3;8)=1

=>(n-1).n.(n+1).(n+2) chia hết cho 24

=>(n2+n-1)2-1 chia hết cho 24 (đpcm)

23 tháng 9 2015

bài này hn mk ms đc học 

55n+1 - 55n    (ms đúng chứ)

= 55n   . 55 - 55n

=55.(55-1) 

= 55. 54 

Vậy 55n+1 - 55n chia hết cho 54