K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Với $n = 0$, nhận

Với $n > 0$, xét với $k > 0$

+) $n = 3k$, thì $n + 3 = 3k + 3 = 3(k+1) > 3$ và chia hết cho $3$ nên không là số nguyên tố $\longrightarrow$ loại

+) $n = 3k + 1$ thì $2n^2 + 12n + 19 = 2(3k+1)^2 + 12(3k+1) + 19 = 18k^2 + 48k + 33 > 3$ và chia hết cho $3$ nên không là số nguyên tố $\longrightarrow$ loại

+) $n = 3k + 2$ thì $2n^2 + 12n + 19 = 2(3k+2)^2 + 12(3k+2) + 19 = 18k^2 + 6k + 51 > 3$ và chia hết cho $3$ nên không là số nguyên tổ $\longrightarrow$ loại

Vậy $n = 0$

28 tháng 12 2016

bn nhận xet: 3; 19; 37 đều là số ngtố, đ k?

vậy n = 0

3 tháng 5 2020

tao chiu

22 tháng 4 2019

a2 + 8a + 5 thành 4a2 + 8a + 5 nha

trên mạng có đầy

1 tháng 3 2021

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

1 tháng 3 2021

undefined

undefined

NV
30 tháng 3 2021

1. 

\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)

\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số

2.

\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)

\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)

\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)

\(\Leftrightarrow...\)

30 tháng 3 2021

Em xin cách làm bài 1 ạ 

25 tháng 7 2023

\(P=n^4+4\) là số nguyên tố

mà \(n^4\) là số nguyên tố khi \(n=1\) và \(4\) là hợp số

\(\Rightarrow n\in\left\{1;3;5;7;...2k+1\right\}\left(k\in N\right)\)

5 tháng 8 2015

1) n+ 4 = (n+ 4n+ 4) - 4n= (n2 + 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1 \(\ge\) 1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

5 tháng 8 2015

mấy bn này toàn bình luận, trong khi đó bài mk...