Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
\(P=n^4+4\) là số nguyên tố
mà \(n^4\) là số nguyên tố khi \(n=1\) và \(4\) là hợp số
\(\Rightarrow n\in\left\{1;3;5;7;...2k+1\right\}\left(k\in N\right)\)
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 \(\ge\) 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
Với $n = 0$, nhận
Với $n > 0$, xét với $k > 0$
+) $n = 3k$, thì $n + 3 = 3k + 3 = 3(k+1) > 3$ và chia hết cho $3$ nên không là số nguyên tố $\longrightarrow$ loại
+) $n = 3k + 1$ thì $2n^2 + 12n + 19 = 2(3k+1)^2 + 12(3k+1) + 19 = 18k^2 + 48k + 33 > 3$ và chia hết cho $3$ nên không là số nguyên tố $\longrightarrow$ loại
+) $n = 3k + 2$ thì $2n^2 + 12n + 19 = 2(3k+2)^2 + 12(3k+2) + 19 = 18k^2 + 6k + 51 > 3$ và chia hết cho $3$ nên không là số nguyên tổ $\longrightarrow$ loại
Vậy $n = 0$
bn nhận xet: 3; 19; 37 đều là số ngtố, đ k?
vậy n = 0