K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Thôi, kệ đi, cả hai đều làm sai hết. Đây là cách giải của tôi:

Vì a chia 7 dư 6; 11 dư 8 và 15 dư 9 nên giả sử:

\(a=7m+6=11n+8=15p+9\)

Ta có:

\(a+36=7m+42=11n+44=15p+45\)

=> a + 36 chia hết cho cả 7, 11 và 15 hay a + 36 chia hết cho 1155

=> a : 1155 dư 1155 - 36 = 1119

10 tháng 12 2016

A  chia cho 7 dư 6 suy ra a chia hết cho13

A chia cho 11 dư 8 suy ra a chia hết cho 19

A chia cho 15 dư 9 suy ra a chia hết cho 24.

Suy ra a thuộc BC(13,19,24) và a nhỏ nhất nén a =BCNN(13,19,24)

13=13.

19=19.

24=2^3.3

A= BCNN(13,19,24)=2^3.3.13.19=5928.

Khi a chia cho 1155 thì có số dư là 5928:1155=5 dư 153.

10 tháng 12 2017

Theo đề bài ta có:

a = 7x+6 = 11y+8 = 15z+9

Mặt khác ta có:

a + 36 = 7x+6+36 = 7x+42 = 7(x+6) chia hết cho 7

= 11y+8+36 = 11y+44 = 11(y+4) chia hết cho 11

= 15z+9+36 = 15z+45 = 15(z+3) chia hết cho 15

Vậy a+36 chia hết cho cả 7,11,15

Mà ƯCLN(7;11;15) = 1

=> a+36 chia hết cho (7.11.15) = 1155

=> a+36 - 1155 chia hết cho 1155

<=> a - 1119 chia hết cho 1155 có dạng 1155k

=> a = 1155k + 1119

Vì 1119 < 1155 nên a chia 1155 dư 1119

Giả sử : a chia cho 17 bằng b dư 11 

\(\Rightarrow a=17b+11\Rightarrow a+74=17b+11+74\)          

\(\Rightarrow a+74=17b+85⋮17\left(1\right)\)  

 Giả sử : a chia cho 23 bằng c dư 18

\(\Rightarrow a=23c+18\Rightarrow a+74=23c+18+74\)               

\(\Rightarrow a+74=23c+92⋮23\left(2\right)\)

Giả sử : a chia cho 11 bằng d dư 13

\(\Rightarrow a=11d+3\Rightarrow a+74=11d+3+74\)

\(\Rightarrow a+74=11d+77⋮11\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(BCNN\left(17;23;11\right)=17.23.11=4301\)

\(\Rightarrow a+74\in B\left(4301\right)\)

\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)

\(\Rightarrow a+74-4301=4301q-4301\)

\(\Rightarrow a-4227=4301\left(q-1\right)\)

\(\Rightarrow a=4301\left(q-1\right)+4227\)

Vậy a chia cho 4301 dư 4227

~ học tốt ~

nhớ

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

17 tháng 12 2018

Ta có a chia cho 17 dư 11

=>a - 11 = 17.k

=> a = 17k + 11=>a + 74 = 17k +85, chia hết cho 17 ( vì 17k+85=17(k+5)) (1)

Ta có a chia cho 23 dư 18

=>a - 18 = 23.n

=>a = 23n + 18=>a + 74 = 23n +92, chia hết cho 23( vì 23n+92=23(m+4)) (2)

Ta lại có a chia cho 11 dư 3

=>a - 3 = 11.m

=>a = 11m + 3 =>a + 74 = 11m +77, chia hết cho 11 ( vì 11m+77=11(m+77)) (3)

Từ (1),(2) và (3) => a + 7 thuộc BC(17,23,11)

BCNN(17,23,11)=17.23.11=4301

=> a+7 thuộc B(4301)

=> a + 7 = 4301q ( q thuộc N*)

=> a + 7 - 4301 = 4301q - 4301

=> a - 4227= 4301(q-1)

=> a= 4301(q-1) + 4227

Vậy a chia cho 4301 dư 4227

17 tháng 12 2018

y cho sửa dòng thứ 10 là Từ (1), (2) và (3)=> x+74 thuộc BC(17;23;11) vậy thui

18 tháng 12 2016

Gọi số đó là a. Ta có :a-6 chia hết 9 => a-6+9=a+3 chia hết 9

a-8 chia hết 11=> a-8 +11=a+3 chia hết 11

=> a+3 chia hết 99

<=> a+3 -99 =a -96 chia hết 99

=> số đó chia 99 dư 96

18 tháng 12 2016

Gọi số đó là a (đk ...)

Theo bài ra , ta có : a+3 chia hết cho cả 9 và 11 => a+3 chia hết cho BCNN(9,11) <=> a+3 chia hết cho 99 => a chia 99 dư : 99-3=96

18 tháng 12 2016

Gọi số đó là a. Ta có

a-6 chia hết 9 => a-6+9=a+3chia hết 9

a-8 chia hết 11=> a-8 +11=a+3 chia hết 11

=> a+3 chia hết 99

<=>a+3 -99 =a -96 chia hết 99

Vậy số đó chia 99 dư 96

30 tháng 12 2018

Dư 32 nha bn ( 17 . 23 . 11 = 4301)

30 tháng 12 2018

\(\text{Ta có : }\)

\(a=17k+11\Rightarrow a+74=11k+85⋮17\)

\(a=23k+18\Rightarrow a+74=23k+92⋮23\)

\(a=11k+3\Rightarrow a+74=11k+77⋮11\)

Từ đó \(a+74\in BC(17,23,11)\)

\(BCNN(17,23,11)=17\cdot23\cdot11=4301\)

\(a+74\in B(4301)\)

\(\Rightarrow a+74=4301q(q\inℕ^∗)\)

\(\Rightarrow a+74-4301=4301q-4301\)

\(\Rightarrow a-4227=4301(q-1)\Rightarrow a=4301(q-1)+4227\)

Vậy a chia cho 4301 dư 4227

20 tháng 3 2016

minh dang gap ai co the giup minh mink lai cho nhe