K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Ta có a chia cho 17 dư 11

=>a - 11 = 17.k

=> a = 17k + 11=>a + 74 = 17k +85, chia hết cho 17 ( vì 17k+85=17(k+5)) (1)

Ta có a chia cho 23 dư 18

=>a - 18 = 23.n

=>a = 23n + 18=>a + 74 = 23n +92, chia hết cho 23( vì 23n+92=23(m+4)) (2)

Ta lại có a chia cho 11 dư 3

=>a - 3 = 11.m

=>a = 11m + 3 =>a + 74 = 11m +77, chia hết cho 11 ( vì 11m+77=11(m+77)) (3)

Từ (1),(2) và (3) => a + 7 thuộc BC(17,23,11)

BCNN(17,23,11)=17.23.11=4301

=> a+7 thuộc B(4301)

=> a + 7 = 4301q ( q thuộc N*)

=> a + 7 - 4301 = 4301q - 4301

=> a - 4227= 4301(q-1)

=> a= 4301(q-1) + 4227

Vậy a chia cho 4301 dư 4227

17 tháng 12 2018

y cho sửa dòng thứ 10 là Từ (1), (2) và (3)=> x+74 thuộc BC(17;23;11) vậy thui

14 tháng 5 2021

Gọi số cần tìm là a ( a ∈∈ N )

Ta có : a : 7 (dư 5)

a : 13 ( dư 4 )

=> a + 9 chia hết cho 7 và 13

7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 .13 = 91

=> a chia hết cho 91 dư 91 - 9 =82

Vậy số tự nhiên đó đem chia 7 dư 5 ; chia 13 dư 4 . Ném đem chia só đó cho 91 duw 82

26 tháng 6 2019

Gọi số tự nhiên cần tìm là ; thương là q:

Theo bài ra ta có:

\(\hept{\begin{cases}a=4q+3\left(1\right)\\a=5.\left(q-2\right)+3\end{cases}}\)

\(\Rightarrow4q+3=5.\left(q-2\right)+3\)

\(\Rightarrow4q=5.\left(q-2\right)\)

\(\Rightarrow4q=5q-10\)

\(\Rightarrow5q-4q=10\)

\(\Rightarrow q=10\)

Thay q=10 vào (1) ta được:

\(a=4.10+3\)

\(a=43\)

Vậy STN cần tìm đó là 43.

26 tháng 6 2019

Gọi số tự nhiên cần tìm là a nhé thiếu chữ a

7 tháng 7 2016

10 ne ban ung ho to nha

Giả sử : a chia cho 17 bằng b dư 11 

\(\Rightarrow a=17b+11\Rightarrow a+74=17b+11+74\)          

\(\Rightarrow a+74=17b+85⋮17\left(1\right)\)  

 Giả sử : a chia cho 23 bằng c dư 18

\(\Rightarrow a=23c+18\Rightarrow a+74=23c+18+74\)               

\(\Rightarrow a+74=23c+92⋮23\left(2\right)\)

Giả sử : a chia cho 11 bằng d dư 13

\(\Rightarrow a=11d+3\Rightarrow a+74=11d+3+74\)

\(\Rightarrow a+74=11d+77⋮11\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(BCNN\left(17;23;11\right)=17.23.11=4301\)

\(\Rightarrow a+74\in B\left(4301\right)\)

\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)

\(\Rightarrow a+74-4301=4301q-4301\)

\(\Rightarrow a-4227=4301\left(q-1\right)\)

\(\Rightarrow a=4301\left(q-1\right)+4227\)

Vậy a chia cho 4301 dư 4227

~ học tốt ~

nhớ

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

21 tháng 6 2021

a) Gọi số cần tìm là a (a\(\in N\)*)

Có: a - 1 \(⋮3\)

a - 1 \(⋮4\)

a - 1 \(⋮5\)

=> a - 1 \(\in BCNN\left(3;4;5\right)\)

=> a - 1 = 3x4x5 = 60

=> a = 61

Vậy số cần tìm là 61

b) Dạng chung của các số có tính chất trên là 60k + 1 (\(k\in N\)*)

21 tháng 6 2021

undefined

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$

$a-4\vdots 5\Rightarrow a+1\vdots 5$

$a-5\vdots 6\Rightarrow a+1\vdots 6$

Tức là $a+1$ là bội chung của $4,5,6$

$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$

$\Rightarrow a+1\vdots 60$

Đặt $a=60k-1$ với $k$ là số tự nhiên

$a\vdots 7$ tức là $60k-1\vdots 7$

$\Leftrightarrow 60k-1-56k\vdots 7$

$\Leftrightarrow 4k-1\vdots 7$

$\Leftrightarrow 4k-8\vdots 7$

$\Leftrightarrow 4(k-2)\vdots 7$

$\Leftrightarrow k-2\vdots 7$

Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$

$\Rightarrow a=60k-1=60.2-1=119$